skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Initiation of Streamers Due to Hydrometeor Collisions in Thunderclouds
In order to initiate streamers and leaders under thunderstorm conditions the electric field should reach values higher than the critical breakdown field Ek (i.e., similar to 30 kV/cm/atm. However, the maximum electric field in thunderstorms measured by balloons is similar to 6-9 kV/cm/atm. In present work, to achieve the electric field amplification required for streamer initiation, a system of two approaching spherical hydrometeors is investigated. Streamer initiation is determined from a Meek number, describing electron multiplication in fields above Ek. We have found the relationships between radii of particles for successful streamer initiation in the gap between these two particles and also on the outside periphery of the two-particle system when the particles are connected by a discharge channel. Furthermore, we estimated the frequency of streamer initiation using three realistic hydrometeor size model distributions available in the literature and found that the scenario of streamer initiation on the outside periphery is only possible for relatively high electric fields >= 0.5Ek at altitudes of 3 and 6 km.  more » « less
Award ID(s):
1744099
PAR ID:
10095068
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
123
ISSN:
2169-897X
Page Range / eLocation ID:
7050-7064
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In classical electrokinetics, the electrophoretic velocity of a dielectric particle is a linear function of the applied electric field. Theoretical studies have predicted the onset of nonlinear electrophoresis at high electric fields because of the nonuniform surface conduction over the curved particle. However, experimental studies have been left behind and are insufficient for a fundamental understanding of the parametric effects on nonlinear electrophoresis. We present in this work a systematic experimental study of the effects of buffer concentration, particle size, and particle zeta potential on the electrophoretic velocity of polystyrene particles in a straight rectangular microchannel for electric fields of up to 3 kV/cm. The measured nonlinear electrophoretic particle velocity is found to exhibit a 2(±0.5)‐order dependence on the applied electric field, which appears to be within the theoretically predicted 3‐ and 3/2‐order dependences for low and high electric fields, respectively. Moreover, the obtained nonlinear electrophoretic particle mobility increases with decreasing buffer concentration (for the same particle) and particle size (for particles with similar zeta potentials) or increasing particle zeta potential (for particles with similar sizes). These observations are all consistent with the theoretical predictions for high electric fields. 
    more » « less
  2. Abstract Coupon specimens of poled and depoled lead zirconate titanate (PZT) are examined under combined stress wave and electric loading conditions. Mode‐I crack initiation and fracture behavior is examined using ultrahigh‐speed imaging and two‐dimensional digital image correlation. The dynamic critical stress intensity factor () is extracted using measured displacement fields ahead of the impulsively loaded crack tip, and compared between poled and depoled plates that were either under no electric field, positive 0.46 kV/mm electric field, or negative 0.46 kV/mm electric field. Poled specimens had a poling direction and applied electric field direction normal to the crack front. The addition of an electric field resulted in a crack‐enhancing effect, where the dynamic fracture toughness of poled specimens under0.46 kV/mm was almost half that of samples with no electric field. Depoled samples experienced almost no change in dynamic fracture toughness with the addition of an electric field. 
    more » « less
  3. null (Ed.)
    The manner of sample injection is critical in microscale electrokinetic (EK) separations, as the resolution of a separation greatly depends on sample quality and how the sample is introduced into the system. There is a significant wealth of knowledge on the development of EK injection methodologies that range from simple and straightforward approaches to sophisticated schemes. The present study focused on the development of optimized EK sample injection schemes for direct current insulator-based EK (DC-iEK) systems. These are microchannels that contain arrays of insulating structures; the presence of these structures creates a nonuniform electric field distribution when a potential is applied, resulting in enhanced nonlinear EK effects. Recently, it was reported that the nonlinear EK effect of electrophoresis of the second kind plays a major role in particle migration in DC-iEK systems. This study presents a methodology for designing EK sample injection schemes that consider the nonlinear EK effects exerted on the particles being injected. Mathematical modeling with COMSOL Multiphysics was employed to identify proper voltages to be used during the EK injection process. Then, a T-microchannel with insulating posts was employed to experimentally perform EK injection and separate a sample containing two types of similar polystyrene particles. The quality of the EK injections was assessed by comparing the resolution (Rs) and number of plates (N) of the experimental particle separations. The findings of this study establish the importance of considering nonlinear EK effects when planning for successful EK injection schemes. 
    more » « less
  4. Abstract We report the optical characterization of nanosecond-pulsed plasma ignited directly in liquid nitrogen. Using imaging and optical emission spectroscopy, we estimate neutral temperatures and densities, as well as local electric field values, and the obtained results indicate that the discharge develops via streamer (‘electronic’) mechanism. We show that millimeter-scale plasma propagates in liquid nitrogen at velocities of ∼500 km s−1with the corresponding required local electric fields as high as 25 MV cm−1, while the estimated local electric fields in the ‘core’ of the discharge are around 6–8 MV cm−1(corresponding to reduced electric field values of 600–1000 Td). The neutral and electron densities in the ‘main body’ of the discharge were estimated using broadened argon lines, indicating that the neutral densities in the near-electrode region are around 1020cm−3(tens of atmospheres), while the maximum recorded temperature is just a few tens of degrees above the surrounding liquid. Electron densities were estimated to be ∼1017cm−3, about two orders of magnitude lower than those measured for water discharge. 
    more » « less
  5. Abstract In this paper we reconstruct Griffiths and Phelps' seminal model of streamer systems to test if it can reproduce the key observational features of fast positive breakdown. We first confirm that our implementation is accurate by reproducing the original results. The model describes how a system of positive streamers exhibits an initial exponential charge growth, as a function of position or time, which rapidly transitions into a quadratic steady state. The charge growth is accompanied by substantial electric field enhancement near the onset location, creating favorable conditions for lightning initiation. Due to the relatively low conductivity of streamers (effectively zero in this model), the electric field enhancement is created by the charge deposited in the first few meters of propagation, in the scale length where the charge growth transitions from exponential to quadratic. The quadratic growth of charge, combined with conical system expansion, makes the surface charge density of the moving front constant. The resulting electric field ahead of the streamer system remains nearly constant during its propagation, consistent with the observations of fast breakdown, which reveal a nearly constant propagation velocity, independently of discharge polarity. Minimal changes to the model allow for simulation of narrow bipolar events, reproducing very well their characteristic bipolar electric field change waveform. Despite its simplicity, the Griffiths and Phelps model provides valuable physical insights in the relationship between fast positive breakdown and lightning initiation. 
    more » « less