Ferroelectric films suffer from both aging and degradation under high ac‐field drive conditions due to loss of polarization with time. In this study, the roles of defect chemistry and internal electric fields on the long‐term stability of the properties of piezoelectric films were explored. For this purpose, lead zirconate titanate (PZT) films with a Zr/Ti ratio of 52/48 doped with Mn‐ (PMZT) or Nb‐ (PNZT) were deposited on Pt coated Si substrates by the sol‐gel method. It was demonstrated that the magnitude of the internal field is much higher in PMZT films compared to PNZT films after poling in the temperature range of 25‐200°C under an electric field of −240 kV/cm. The development of the internal field is thermally activated, with activation energies from 0.5 ± 0.06 to 0.8 ± 0.1 eV in Mn doped films and from 0.8 ± 0.1 to 1.2 ± 0.2 eV in Nb doped films. The different activation energies for imprint suggests that the physical mechanism underlying the evolution of the internal field in PMZT and PNZT films differs; the enhanced internal field upon poling is attributed to (a) alignment of oxygen vacancy—acceptor ion defect dipoles (
Coupon specimens of poled and depoled lead zirconate titanate (PZT) are examined under combined stress wave and electric loading conditions. Mode‐I crack initiation and fracture behavior is examined using ultrahigh‐speed imaging and two‐dimensional digital image correlation. The dynamic critical stress intensity factor (
- Award ID(s):
- 1555015
- PAR ID:
- 10366752
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of the American Ceramic Society
- Volume:
- 105
- Issue:
- 5
- ISSN:
- 0002-7820
- Page Range / eLocation ID:
- p. 3116-3122
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract , ) in PMZT films, and (b) thermionic injection of electron charges and charge trapping in PNZT films. In either case, the internal field reduces back switching, enhances the remanent piezoelectric properties, and dramatically improves the aging behavior. PMZT films exhibited the greatest enhancement, with reduced high temperature (180°C) aging rates of 2%‐3%/decade due to improved stability of the poled state. In contrast, PNZT films showed significantly larger high temperature aging rates (15.5%/decade) in the piezoelectric coefficient, demonstrating that the fully poled state was not retained with time. -
Abstract The hydration of the two most reactive phases of ordinary Portland cement (OPC), tricalcium silicate (C3S), and tricalcium aluminate (C3A) is successfully halted when the activity of water (
) falls below critical thresholds of 0.70 and 0.45, respectively. It has been established that the reduction in relative humidity (RH) and suppresses the hydration of all anhydrous phases in OPC, including less explored phases like dicalcium silicate, that is, belite (β‐C2S). However, the degree of suppression, that is, the critical threshold, for β‐C2S, standalone has yet to be established. This study utilizes isothermal microcalorimetry and X‐ray diffraction techniques to elucidate the influence of on the hydration of ‐C2S suspensions via incremental replacements of water with isopropanol (IPA). Experimentally, this study shows that with increasing IPA replacements, hydration is increasingly suppressed until eventually brought to a halt at a critical threshold of approximately 27.7% IPA on a weight basis (wt.%IPA). From thermodynamic estimations, the exact critical threshold and solubility product constant of ‐C2S ( ) are established as 0.913 and 10−12.68, respectively. This study enables enhanced understanding of β‐C2S reactivity and provides thermodynamic parameters during the hydration of β‐C2S‐containing cementitious systems such as OPC‐based and calcium aluminate‐based systems. -
Abstract A graph is said to be
‐universal if it contains every graph with n vertices and maximum degree at most Δ as a subgraph. Dellamonica, Kohayakawa, Rödl and Ruciński used a “matching‐based” embedding technique introduced by Alon and Füredi to show that the random graphis asymptotically almost surely ‐universal for , a threshold for the property that every subset of Δ vertices has a common neighbor. This bound has become a benchmark in the field and many subsequent results on embedding spanning graphs of maximum degree Δ in random graphs are proven only up to this threshold. We take a step towards overcoming limitations of former techniques by showing that is almost surely ‐universal for . -
Abstract It is proved that for every countable structure
and a computable successor ordinal α there is a countable structure which is ‐least among all countable structures such that is Σ‐definable in the αth jump . We also show that this result does not hold for the limit ordinal . Moreover, we prove that there is no countable structure with the degree spectrum for . -
Abstract We report the pulsed‐laser deposition of epitaxial double‐perovskite Bi2FeCrO6(BFCO) films on the (001)‐, (110), and (111)‐oriented single‐crystal SrTiO3substrates. All of the BFCO films with various orientations show the
and superlattice‐diffraction peaks. The intensity ratios between the ‐superlattice and the main 111‐diffraction peak can be tailored by simply adjusting the laser repetition rate and substrate temperature, reaching up to 4.4%. However, both optical absorption spectra and magnetic measurements evidence that the strong superlattice peaks are not correlated with the B ‐site Fe3+/Cr3+cation ordering. Instead, the epitaxial (111)‐oriented Bi2FeCrO6films show an enhanced remanent polarization of 92 μC/cm2at 10 K, much larger than the predicted values by density‐functional theory calculations. Positive‐up‐negative‐down (PUND) measurements with a time interval of 10 μs further support these observations. Therefore, our experimental results reveal that the strong superlattice peaks may come fromA ‐ orB ‐site cation shifts along the pseudo‐cubic [111] direction, which further enhance the ferroelectric polarization of the BFCO thin films.