skip to main content


Title: Accurately Simulating Energy Consumption of I/O-intensive Scientific Workflows
While distributed computing infrastructures can provide infrastructure-level techniques for managing energy consumption, application-level energy consumption models have also been developed to support energy-efficient scheduling and resource provisioning algorithms. In this work, we analyze the accuracy of a widely-used application-level model that have been developed and used in the context of scientific workflow executions. To this end, we profile two production scientific workflows on a distributed platform instrumented with power meters. We then conduct an analysis of power and energy consumption measurements. This analysis shows that power consumption is not linearly related to CPU utilization and that I/O operations significantly impact power, and thus energy, consumption. We then propose a power consumption model that accounts for I/O operations, including the impact of waiting for these operations to complete, and for concurrent task executions on multi-socket, multi-core compute nodes. We implement our proposed model as part of a simulator that allows us to draw direct comparisons between real-world and modeled power and energy consumption. We find that our model has high accuracy when compared to real-world executions. Furthermore, our model improves accuracy by about two orders of magnitude when compared to the traditional models used in the energy-efficient workflow scheduling literature.  more » « less
Award ID(s):
1642335 1642369
NSF-PAR ID:
10095087
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Conference on Computational Science (ICCS)
Page Range / eLocation ID:
1-15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Improving energy efficiency has become necessary to enable sustainable computational science. At the same time, scientific workflows are key in facilitating distributed computing in virtually all domain sciences. As data and computational requirements increase, I/O-intensive workflows have become prevalent. In this work, we evaluate the ability of twopopular energy-aware workflow scheduling algorithms to provide effective schedules for this class of workflow applications, that is, schedules that strike a good compromise between workflow execution time and energy consumption. These two algorithms make decisions based on a widely used power consumption model that simply assumes linear correlation to CPU usage. Previous work has shown this model to be inaccurate, in particular for modeling power consumption of I/O-intensive workflow executions, and has proposed an accurate model. We evaluate the effectiveness of the two aforementioned algorithms based on this accurate model. We find that, when making their decisions, these algorithms can underestimate power consumption by up to 360{\%}, which makes it unclear how well these algorithm would fare in practice. To evaluate the benefit of using the more accurate power consumption model in practice, we propose a simple scheduling algorithm that relies on this model to balance the I/O load across the available compute resources. Experimental results show that this algorithm achieves more desirable compromises between energy consumption and workflow execution time than the two popular algorithms. 
    more » « less
  2. Scientific workflows are used routinely in numerous scientific domains, and Workflow Management Systems (WMSs) have been developed to orchestrate and optimize workflow executions on distributed platforms. WMSs are complex software systems that interact with complex software infrastructures. Most WMS research and development activities rely on empirical experiments conducted with full-fledged software stacks on actual hardware platforms. Such experiments, however, are limited to hardware and software infrastructures at hand and can be labor- and/or time-intensive. As a result, relying solely on real-world experiments impedes WMS research and development. An alternative is to conduct experiments in simulation. In this work we present WRENCH, a WMS simulation framework, whose objectives are (i) accurate and scalable simulations; and (ii) easy simulation software development. WRENCH achieves its first objective by building on the SimGrid framework. While SimGrid is recognized for the accuracy and scalability of its simulation models, it only provides low-level simulation abstractions and thus large software development efforts are required when implementing simulators of complex systems. WRENCH thus achieves its second objective by providing high-level and directly re-usable simulation abstractions on top of SimGrid. After describing and giving rationales for WRENCH’s software architecture and APIs, we present a case study in which we apply WRENCH to simulate the Pegasus production WMS. We report on ease of implementation, simulation accuracy, and simulation scalability so as to determine to which extent WRENCH achieves its two above objectives. We also draw both qualitative and quantitative comparisons with a previously proposed workflow simulator. 
    more » « less
  3. Scientific workflows are used routinely in numerous scientific domains, and Workflow Management Systems (WMSs) have been developed to orchestrate and optimize workflow executions on distributed platforms. WMSs are complex software systems that interact with complex software infrastructures. Most WMS research and development activities rely on empirical experiments conducted with full-fledged software stacks on actual hardware platforms. Such experiments, however, are limited to hardware and software infrastructures at hand and can be labor- and/or time-intensive. As a result, relying solely on real-world experiments impedes WMS research and development. An alternative is to conduct experiments in simulation. In this work we present WRENCH, a WMS simulation framework, whose objectives are (i)~accurate and scalable simulations; and (ii)~easy simulation software development. WRENCH achieves its first objective by building on the SimGrid framework. While SimGrid is recognized for the accuracy and scalability of its simulation models, it only provides low-level simulation abstractions and thus large software development efforts are required when implementing simulators of complex systems. WRENCH thus achieves its second objective by providing high-level and directly re-usable simulation abstractions on top of SimGrid. After describing and giving rationales for WRENCH's software architecture and APIs, we present a case study in which we apply WRENCH to simulate the Pegasus production WMS. We report on ease of implementation, simulation accuracy, and simulation scalability so as to determine to which extent WRENCH achieves its two above objectives. We also draw both qualitative and quantitative comparisons with a previously proposed workflow simulator. 
    more » « less
  4. Energy-efficiency is a key concern in mobile sensing applications, such as those for tracking social interactions or physical activities. An attractive approach to saving energy is to shape the workload of the system by artificially introducing delays so that the workload would require less energy to process. However, adding delays to save energy may have a detrimental impact on user experience. To address this problem, we present Gratis, a novel paradigm for incorporating workload shaping energy optimizations in mobile sensing applications in an automated manner. Gratis adopts stream programs as a high-level abstraction whose execution is coordinated using an explicit power management policy. We present an expressive coordination language that can specify a broad range of workload-shaping optimizations. A unique property of the proposed power management policies is that they have predictable performance, which can be estimated at compile time, in a computationally efficient manner, from a small number of measurements. We have developed a simulator that can predict the energy with a average error of 7% and delay with a average error of 15%, even when applications have variable workloads. The simulator is scalable: hours of real-world traces can be simulated in a few seconds. Building on the simulator's accuracy and scalability, we have developed tools for configuring power management policies automatically. We have evaluated Gratis by developing two mobile applications and optimizing their energy consumption. For example, an application that tracks social interactions using speaker-identification techniques can run for only 7 hours without energy optimizations. However, when Gratis employs batching, scheduled concurrency, and adaptive sensing, the battery lifetime can be extended to 45 hours when the end-to-end deadline is one minute. These results demonstrate the efficacy of our approach to reduce energy consumption in mobile sensing applications. 
    more » « less
  5. Autonomous mobile robots (AMRs) have been widely utilized in industry to execute various on-board computer-vision applications including autonomous guidance, security patrol, object detection, and face recognition. Most of the applications executed by an AMR involve the analysis of camera images through trained machine learning models. Many research studies on machine learning focus either on performance without considering energy efficiency or on techniques such as pruning and compression to make the model more energy-efficient. However, most previous work do not study the root causes of energy inefficiency for the execution of those applications on AMRs. The computing stack on an AMR accounts for 33% of the total energy consumption and can thus highly impact the battery life of the robot. Because recharging an AMR may disrupt the application execution, it is important to efficiently utilize the available energy for maximized battery life. In this paper, we first analyze the breakdown of power dissipation for the execution of computer-vision applications on AMRs and discover three main root causes of energy inefficiency: uncoordinated access to sensor data, performance-oriented model inference execution, and uncoordinated execution of concurrent jobs. In order to fix these three inefficiencies, we propose E2M, an energy-efficient middleware software stack for autonomous mobile robots. First, E2M regulates the access of different processes to sensor data, e.g., camera frames, so that the amount of data actually captured by concurrently executing jobs can be minimized. Second, based on a predefined per-process performance metric (e.g., safety, accuracy) and desired target, E2M manipulates the process execution period to find the best energy-performance trade off. Third, E2M coordinates the execution of the concurrent processes to maximize the total contiguous sleep time of the computing hardware for maximized energy savings. We have implemented a prototype of E2M on a real-world AMR. Our experimental results show that, compared to several baselines, E2M leads to 24% energy savings for the computing platform, which translates into an extra 11.5% of battery time and 14 extra minutes of robot runtime, with a performance degradation lower than 7.9% for safety and 1.84% for accuracy. 
    more » « less