skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accurately Simulating Energy Consumption of I/O-intensive Scientific Workflows
While distributed computing infrastructures can provide infrastructure-level techniques for managing energy consumption, application-level energy consumption models have also been developed to support energy-efficient scheduling and resource provisioning algorithms. In this work, we analyze the accuracy of a widely-used application-level model that have been developed and used in the context of scientific workflow executions. To this end, we profile two production scientific workflows on a distributed platform instrumented with power meters. We then conduct an analysis of power and energy consumption measurements. This analysis shows that power consumption is not linearly related to CPU utilization and that I/O operations significantly impact power, and thus energy, consumption. We then propose a power consumption model that accounts for I/O operations, including the impact of waiting for these operations to complete, and for concurrent task executions on multi-socket, multi-core compute nodes. We implement our proposed model as part of a simulator that allows us to draw direct comparisons between real-world and modeled power and energy consumption. We find that our model has high accuracy when compared to real-world executions. Furthermore, our model improves accuracy by about two orders of magnitude when compared to the traditional models used in the energy-efficient workflow scheduling literature.  more » « less
Award ID(s):
1642335 1642369
PAR ID:
10095087
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Conference on Computational Science (ICCS)
Page Range / eLocation ID:
1-15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Improving energy efficiency has become necessary to enable sustainable computational science. At the same time, scientific workflows are key in facilitating distributed computing in virtually all domain sciences. As data and computational requirements increase, I/O-intensive workflows have become prevalent. In this work, we evaluate the ability of twopopular energy-aware workflow scheduling algorithms to provide effective schedules for this class of workflow applications, that is, schedules that strike a good compromise between workflow execution time and energy consumption. These two algorithms make decisions based on a widely used power consumption model that simply assumes linear correlation to CPU usage. Previous work has shown this model to be inaccurate, in particular for modeling power consumption of I/O-intensive workflow executions, and has proposed an accurate model. We evaluate the effectiveness of the two aforementioned algorithms based on this accurate model. We find that, when making their decisions, these algorithms can underestimate power consumption by up to 360{\%}, which makes it unclear how well these algorithm would fare in practice. To evaluate the benefit of using the more accurate power consumption model in practice, we propose a simple scheduling algorithm that relies on this model to balance the I/O load across the available compute resources. Experimental results show that this algorithm achieves more desirable compromises between energy consumption and workflow execution time than the two popular algorithms. 
    more » « less
  2. —Exascale computing enables unprecedented, detailed and coupled scientific simulations which generate data on the order of tens of petabytes. Due to large data volumes, lossy compressors become indispensable as they enable better compression ratios and runtime performance than lossless compressors. Moreover, as (high-performance computing) HPC systems grow larger, they draw power on the scale of tens of megawatts. Data motion is expensive in time and energy. Therefore, optimizing compressor and data I/O power usage is an important step in reducing energy consumption to meet sustainable computing goals and stay within limited power budgets. In this paper, we explore efficient power consumption gains for the SZ and ZFP lossy compressors and data writing on a cloud HPC system while varying the CPU frequency, scientific data sets, and system architecture. Using this power consumption data, we construct a power model for lossy compression and present a tuning methodology that reduces energy overhead of lossy compressors and data writing on HPC systems by 14.3% on average. We apply our model and find 6.5 kJs, or 13%, of savings on average for 512GB I/O. Therefore, utilizing our model results in more energy efficient lossy data compression and I/O. 
    more » « less
  3. Scientific workflows are used routinely in numerous scientific domains, and Workflow Management Systems (WMSs) have been developed to orchestrate and optimize workflow executions on distributed platforms. WMSs are complex software systems that interact with complex software infrastructures. Most WMS research and development activities rely on empirical experiments conducted with full-fledged software stacks on actual hardware platforms. Such experiments, however, are limited to hardware and software infrastructures at hand and can be labor- and/or time-intensive. As a result, relying solely on real-world experiments impedes WMS research and development. An alternative is to conduct experiments in simulation. In this work we present WRENCH, a WMS simulation framework, whose objectives are (i) accurate and scalable simulations; and (ii) easy simulation software development. WRENCH achieves its first objective by building on the SimGrid framework. While SimGrid is recognized for the accuracy and scalability of its simulation models, it only provides low-level simulation abstractions and thus large software development efforts are required when implementing simulators of complex systems. WRENCH thus achieves its second objective by providing high-level and directly re-usable simulation abstractions on top of SimGrid. After describing and giving rationales for WRENCH’s software architecture and APIs, we present a case study in which we apply WRENCH to simulate the Pegasus production WMS. We report on ease of implementation, simulation accuracy, and simulation scalability so as to determine to which extent WRENCH achieves its two above objectives. We also draw both qualitative and quantitative comparisons with a previously proposed workflow simulator. 
    more » « less
  4. Scientific workflows are used routinely in numerous scientific domains, and Workflow Management Systems (WMSs) have been developed to orchestrate and optimize workflow executions on distributed platforms. WMSs are complex software systems that interact with complex software infrastructures. Most WMS research and development activities rely on empirical experiments conducted with full-fledged software stacks on actual hardware platforms. Such experiments, however, are limited to hardware and software infrastructures at hand and can be labor- and/or time-intensive. As a result, relying solely on real-world experiments impedes WMS research and development. An alternative is to conduct experiments in simulation. In this work we present WRENCH, a WMS simulation framework, whose objectives are (i)~accurate and scalable simulations; and (ii)~easy simulation software development. WRENCH achieves its first objective by building on the SimGrid framework. While SimGrid is recognized for the accuracy and scalability of its simulation models, it only provides low-level simulation abstractions and thus large software development efforts are required when implementing simulators of complex systems. WRENCH thus achieves its second objective by providing high-level and directly re-usable simulation abstractions on top of SimGrid. After describing and giving rationales for WRENCH's software architecture and APIs, we present a case study in which we apply WRENCH to simulate the Pegasus production WMS. We report on ease of implementation, simulation accuracy, and simulation scalability so as to determine to which extent WRENCH achieves its two above objectives. We also draw both qualitative and quantitative comparisons with a previously proposed workflow simulator. 
    more » « less
  5. We present FusionFS, a direct-access firmware-level in-storage filesystem that exploits the near-storage computational capability for fast I/O and data processing, consequently reducing I/O bottlenecks. In FusionFS, we introduce a new abstraction, CISCOps, that combines multiple I/O and data processing operations into one fused operation and offloaded for near-storage processing. By offloading, CISCOps significantly reduces dominant I/O overheads such as system calls, data movement, communication, and other software overheads. Further, to enhance the use of CISCOps, we introduce MicroTx for fine-grained crash consistency and fast (automatic) recovery of I/O and data processing operations. We also explore scheduling techniques to ensure fair and efficient use of in-storage compute and memory resources across tenants. Evaluation of FusionFS against the state-of-the-art user-level, kernel-level, and firmware-level file systems using microbenchmarks, macrobenchmarks, and real-world applications shows up to 6.12X, 5.09X and 2.07X performance gains, and 2.65X faster recovery for applications. 
    more » « less