Oxidative phenol-arene and phenol-phenol cross-coupling using periodic acid
More Like this
-
Abstract Chemoselective cross-coupling of phenol derivatives is valuable for generating products that retain halides. Here we discuss recent developments in selective cross-couplings of chloroaryl phenol derivatives, with a particular focus on reactions of chloroaryl tosylates. The first example of a C–O-selective Ni-catalyzed Suzuki–Miyaura coupling of chloroaryl tosylates is discussed in detail. 1 Introduction 2 Density Functional Theory Studies on Oxidative Addition at Nickel(0) 3 Stoichiometric Oxidative Addition Studies 4 Development of a Tosylate-Selective Suzuki Coupling 5 Conclusion and Outlookmore » « less
-
Catalytic hydrodeoxygenation (HDO) of phenolics is a necessary step for upgrading bio-oils to transportation fuels. Bimetallic catalysts offer the potential of increased activities and selectivities for desired products. Adding non-metallic elements, such as phosphorous, allows for charge distribution between the metal and nonmetal atoms, which improves Lewis acid character of catalytic surfaces. This work utilizes experimental and density functional theory (DFT) based calculations to identify potential C–O bond cleavage pathways and product selectivities for HDO reactions on FeMoP, RuMoP, and NiMoP catalysts. Our work demonstrates that FeMoP catalyst favors direct deoxygenation pathway due to a lower activation energy barrier for C–O bond cleavage whereas RuMoP and NiMoP catalysts promote ring hydrogenation first, followed by the cleavage of C–O bond. The Bader charge analysis indicates that for these catalytic systems Mo δ+ site bears a large positive charge which acts as a Lewis acid site for HDO reactions. Overall, we find that trends in the experimental product selectivities are in good agreement with that predicted with DFT calculations.more » « less