Oxidative phenol-arene and phenol-phenol cross-coupling using periodic acid
More Like this
-
Abstract Chemoselective cross-coupling of phenol derivatives is valuable for generating products that retain halides. Here we discuss recent developments in selective cross-couplings of chloroaryl phenol derivatives, with a particular focus on reactions of chloroaryl tosylates. The first example of a C–O-selective Ni-catalyzed Suzuki–Miyaura coupling of chloroaryl tosylates is discussed in detail. 1 Introduction 2 Density Functional Theory Studies on Oxidative Addition at Nickel(0) 3 Stoichiometric Oxidative Addition Studies 4 Development of a Tosylate-Selective Suzuki Coupling 5 Conclusion and Outlookmore » « less
-
Catalytic hydrodeoxygenation (HDO) of phenolics is a necessary step for upgrading bio-oils to transportation fuels. Bimetallic catalysts offer the potential of increased activities and selectivities for desired products. Adding non-metallic elements, such as phosphorous, allows for charge distribution between the metal and nonmetal atoms, which improves Lewis acid character of catalytic surfaces. This work utilizes experimental and density functional theory (DFT) based calculations to identify potential C–O bond cleavage pathways and product selectivities for HDO reactions on FeMoP, RuMoP, and NiMoP catalysts. Our work demonstrates that FeMoP catalyst favors direct deoxygenation pathway due to a lower activation energy barrier for C–O bond cleavage whereas RuMoP and NiMoP catalysts promote ring hydrogenation first, followed by the cleavage of C–O bond. The Bader charge analysis indicates that for these catalytic systems Mo δ+ site bears a large positive charge which acts as a Lewis acid site for HDO reactions. Overall, we find that trends in the experimental product selectivities are in good agreement with that predicted with DFT calculations.more » « less
-
Ligands play a central role in dictating the electronic properties of metal complexes to which they are coordinated. A fundamental understanding of changes in ligand properties can be used as design principles for more efficient catalysts. Designing ligands that have multiple protonation states that will change the properties of the coordination complex would be useful as potential ways of controlling catalysis, for example, as an on/off switch where one redox state exists below thermodynamic potential and another exists above. Thus, phenol moieties built into strongly coordinating ligands, like that of tpyPhOH (4′-(4-hydroxyphenyl)-2,2′:6′,2′’-terpyridine) may provide such a handle. Herein, we report the electrochemical and spectral characterization, and the crystallographic and computational analysis of two ruthenium analogs: [Ru(tpy)(tpyPhOH)](PF6)2 and [Ru(tpyPhOH)2] (PF6)2 (tpy =2,2′:6′,2′’-terpyridine). Cyclic voltammetry and differential pulse voltammetry indicate that two redox events occur, one of which is pH independent and we hypothesize that these follow an electrochemical- chemical-electrochemical (ECE) mechanism. XRD results of the ruthenium complexes’ protonated forms are generally consistent with expected bond lengths and angles and are in agreement with computational modeling. The properties are compared to a previously reported analog that contains the –OH group directly connected to terpyridine, [Ru(tpyOH)2](PF6)2, where tpyOH is 4′-hydroxy-2,2′:6′,2′’-terpyridine, with some intriguing differences. Overall, these data indicate that the phenyl-substituent decouples the phenol such that it behaves both as an electron withdrawing substituent and a location for a ligand centered oxidation event to occur.more » « less
An official website of the United States government

