skip to main content


Title: Towards understanding of lanthanide–transition metal bonding: investigations of the first Ce–Fe bonded complex
The syntheses, structural, and magnetic characterization of three new organometallic Ce complexes stabilized by PyCp 2 2− (PyCp 2 2− = [2,6-(CH 2 C 5 H 3 ) 2 C 5 H 3 N] 2− ) are reported. Complex 1 provides the first example of a crystallographically characterized unsupported Ce–Fe bond in a molecular compound. Results from IR spectroscopy and computational analyses suggest weaker Fe → Ce electron-donation than in a previously reported Dy–Fe bonded species.  more » « less
Award ID(s):
1753014 1664866
PAR ID:
10095188
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
54
Issue:
77
ISSN:
1359-7345
Page Range / eLocation ID:
10893 to 10896
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cyanide, as an ambidentate ligand, plays a pivotal role in providing a simple diatomic building-block motif for controlled metal aggregation (M–CN–M′). Specifically, the inherent hard–soft nature of the cyanide ligand, i.e. , hard-nitrogen and soft-carbon centers, is due to electronic handles for binding Lewis acids following the hard–soft acid–base principle. Studies by Holm and Karlin showed structural and electronic requirements for cyanide-bridged (por)Fe III –CN–Cu II/I (por = porphyrin) molecular assemblies as biomimetics for cyanide-inhibited terminal quinol oxidases and cytochrome-C oxidase. The dinitrosyliron unit (DNIU) that exists in two redox states, {Fe(NO) 2 } 9 and {Fe(NO) 2 } 10 , draws attention as an electronic analogy of Cu II and Cu I , d 9 and d 10 , respectively. In similar controlled aggregations, L-type [(η 5 -C 5 R 5 )Fe(dppe)(CN)] (dppe = diphenyl phosphinoethane; R = H and Me) have been used as N-donor, μ-cyanoiron metalloligands to stabilize the DNIU in two redox states. Two bimetallic [(η 5 -C 5 R 5 )(dppe)Fe II –CN–{Fe(NO) 2 } 9 (sIMes)][BF 4 ] complexes, Fe-1 (R = H) and Fe*-1 (R = CH 3 ), showed dissimilar Fe II CN–{Fe(NO) 2 } 9 angular bends due to the electronic donor properties of the [(η 5 -C 5 R 5 )Fe(dppe)(CN)] μ-cyanoiron metalloligand. A trimetallic [(η 5 -C 5 Me 5 )(dppe)Fe II –CN] 2 –{Fe(NO) 2 } 10 complex, Fe*-2 , engaged two bridging μ-cyanoiron metalloligands to stabilize the {Fe(NO) 2 } 10 unit. The lability of the Fe II –CN–{Fe(NO) 2 } 9/10 bond was probed by suitable X-type (Na + SPh − ) and L-type (PMe 3 ) ligands. Treatment of Fe-1 and Fe*-1 with PMe 3 accounted for a reduction-induced substitution at the DNIU, releasing [(η 5 -C 5 R 5 )Fe(dppe)(CN)] and N-heterocyclic carbene, and generating (PMe 3 ) 2 Fe(NO) 2 as the reduced {Fe(NO) 2 } 10 product. 
    more » « less
  2. Abstract

    A traditional composite cathode for proton‐conducting solid oxide fuel cells (H‐SOFCs) is typically obtained by mixing cathode materials and proton conducting electrolyte of BaCe0.7Y0.2Zr0.1O3–δ(BZCY), providing chemical and thermal compatibility with the electrolyte. Here, a series of triple‐conducing and cobalt‐free iron‐based perovskites as cathodes for H‐SOFCs is reported. Specifically, BaCexFe1–xO3–δ(x = 0.36, 0.43, and 0.50) shows various contents of two single phase perovskites with an in situ heterojunction structure as well as triple conductivity by tailoring the Ce/Fe ratios. The cell performance with the optimized BaCe0.36Fe0.64O3–δ(BCF36) cathode composition reaches 1056 mW cm−2at 700 °C. Moreover, a record cell performance of 1525 mW cm−2at 700 °C is obtained by modifying the BCF36 cathode microstructure through a spraying method, demonstrating high promise with Co‐free cathodes for H‐SOFCs.

     
    more » « less
  3. The known sandwich compound [η 5 -(CH 2 ) 3 N 2 (BPh) 2 CMe] 2 Fe in which adjacent C 2 units are replaced by isoelectronic BN units can be considered as a boraza analogues of ferrocene similar to borazine, B 3 N 3 H 6 , considered as a boraza analogue of benzene. In this connection, the related bis(1,2,3,5-tetramethyl-1,2-diaza-3,5-diborolyl) derivatives (Me 4 B 2 N 2 CH) 2 M (M = Ti, V, Cr, Mn, Fe, Co, Ni) for all of the first row transition metals have been optimized using density functional theory for comparison with the isoelectronic tetramethylcyclopentadienyl derivatives (Me 4 C 5 H) 2 M. Low-energy sandwich structures having parallel B 2 N 2 C rings in a trans orientation are found for all seven metals. The 1,2-diaza-3,5-diborolyl ligand appears to be a weaker field ligand than the isoelectronic cyclopentadienyl ligand as indicated by higher spin ground states for some (η 5 -Me 4 B 2 N 2 CH) 2 M sandwich compounds relative to the corresponding metallocenes (η 5 -Me 4 C 5 H) 2 M. Thus (η 5 -Me 4 B 2 N 2 CH) 2 Cr has a quintet ground state in contrast to the triplet ground state of (η 5 -Me 4 C 5 H) 2 Cr. Similarly, the sextet ground state of (η 5 -Me 4 B 2 N 2 CH) 2 Mn lies ∼18 kcal mol −1 below the quartet state in contrast to the doublet ground state of the isoelectronic (Me 4 C 5 H) 2 Mn. These sandwich compounds are potentially accessible by reaction of 1,2-diaza-3,5-diborolide anions with metal halides analogous to the synthesis of [η 5 -(CH 2 ) 3 N 2 (BPh) 2 CMe] 2 Fe. 
    more » « less
  4. The functionalization of methane, ethane, and other alkanes derived from fossil fuels is a central goal in the chemical enterprise. Recently, a photocatalytic system comprising [CeIVCl5(OR)]2−[CeIV, cerium(IV); OR, –OCH3or –OCCl2CH3] was disclosed. The system was reportedly capable of alkane activation by alkoxy radicals (RO•) formed by CeIV–OR bond photolysis. In this work, we present evidence that the reported carbon-hydrogen (C–H) activation of alkanes is instead mediated by the photocatalyst [NEt4]2[CeCl6] (NEt4+, tetraethylammonium), and RO• are not intermediates. Spectroscopic analyses and kinetics were investigated for C–H activation to identify chlorine radical (Cl•) generation as the rate-limiting step. Density functional theory calculations support the formation of [Cl•][alcohol] adducts when alcohols are present, which can manifest a masked RO• character. This result serves as an important cautionary note for interpretation of radical trapping experiments.

     
    more » « less
  5. null (Ed.)
    Abstract The synthesis of bona fide organometallic Ce IV complexes is a formidable challenge given the typically oxidizing properties of the Ce IV cation and reducing tendencies of carbanions. Herein, we report a pair of compounds comprising a Ce IV  − C aryl bond [Li(THF) 4 ][Ce IV (κ 2 - ortho -oxa)(MBP) 2 ] ( 3-THF ) and [Li(DME) 3 ][Ce IV (κ 2 - ortho -oxa)(MBP) 2 ] ( 3-DME ), ortho -oxa = dihydro-dimethyl-2-[4-(trifluoromethyl)phenyl]-oxazolide, MBP 2–  = 2,2′-methylenebis(6- tert -butyl-4-methylphenolate), which exhibit Ce IV  − C aryl bond lengths of 2.571(7) – 2.5806(19) Å and strongly-deshielded, Ce IV  − C ipso 13 C{ 1 H} NMR resonances at 255.6 ppm. Computational analyses reveal the Ce contribution to the Ce IV  − C aryl bond of 3-THF is ~12%, indicating appreciable metal-ligand covalency. Computations also reproduce the characteristic 13 C{ 1 H} resonance, and show a strong influence from spin-orbit coupling (SOC) effects on the chemical shift. The results demonstrate that SOC-driven deshielding is present for Ce IV  − C ipso 13 C{ 1 H} resonances and not just for diamagnetic actinide compounds. 
    more » « less