skip to main content


Search for: All records

Award ID contains: 1753014

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We report the first f‐block‐ruthenocenophane complexes1(Dy) and2(Tb) and provide a comparative discussion of their magnetic structure with respect to earlier reported ferrocenophane analogues. While axial elongation of the rare trigonal‐prismatic geometry stabilizes the magnetic ground state in the case of Dy3+and results in a larger barrier to magnetization reversal (U), a decrease inUis observed for the case of Tb3+.

     
    more » « less
  2. Lanthanide metallocenophanes are an intriguing class of organometallic complexes that feature rare six-coordinate trigonal prismatic coordination environments of 4f elements with close intramolecular proximity to transition metal ions. Herein, we present a systematic study of the structural and magnetic properties of the ferrocenophanes, [LnFc 3 (THF) 2 Li 2 ] − , of the late trivalent lanthanide ions (Ln = Gd ( 1 ), Ho ( 2 ), Er ( 3 ), Tm ( 4 ), Yb ( 5 ), Lu ( 6 )). One major structural trend within this class of complexes is the increasing diferrocenyl (Fc 2− ) average twist angle with decreasing ionic radius ( r ion ) of the central Ln ion, resulting in the largest average Fc 2− twist angles for the Lu 3+ compound 6 . Such high sensitivity of the twist angle to changes in r ion is unique to the here presented ferrocenophane complexes and likely due to the large trigonal plane separation enforced by the ligand (>3.2 Å). This geometry also allows the non-Kramers ion Ho 3+ to exhibit slow magnetic relaxation in the absence of applied dc fields, rendering compound 2 a rare example of a Ho-based single-molecule magnet (SMM) with barriers to magnetization reversal ( U ) of 110–131 cm −1 . In contrast, compounds featuring Ln ions with prolate electron density ( 3–5 ) don't show slow magnetization dynamics under the same conditions. The observed trends in magnetic properties of 2–5 are supported by state-of-the-art ab initio calculations. Finally, the magneto-structural relationship of the trigonal prismatic Ho-[1]ferrocenophane motif was further investigated by axial ligand (THF in 2 ) exchange to yield [HoFc 3 (THF*) 2 Li 2 ] − ( 2-THF* ) and [HoFc 3 (py) 2 Li 2 ] − ( 2-py ) motifs. We find that larger average Fc 2− twist angles (in 2-THF* and 2-py as compared to in 2 ) result in faster magnetic relaxation times at a given temperature. 
    more » « less
  3. The syntheses, structural, and magnetic characterization of three new organometallic Ce complexes stabilized by PyCp 2 2− (PyCp 2 2− = [2,6-(CH 2 C 5 H 3 ) 2 C 5 H 3 N] 2− ) are reported. Complex 1 provides the first example of a crystallographically characterized unsupported Ce–Fe bond in a molecular compound. Results from IR spectroscopy and computational analyses suggest weaker Fe → Ce electron-donation than in a previously reported Dy–Fe bonded species. 
    more » « less