skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DB3F & DF-Toolkit:The Database Forensic File Format and the Database Forensic Toolkit
The majority of sensitive and personal user data is stored in different Database Management Systems (DBMS). For example, Oracle is frequently used to store corporate data, MySQL serves as the back-end storage for most webstores, and SQLite stores personal data such as SMS messages on a phone or browser bookmarks. Each DBMS manages its own storage (within the operating system), thus databases require their own set of forensic tools. While database carving solutions have been built by multiple research groups, forensic investigators today still lack the tools necessary to analyze DBMS forensic artifacts. The unique nature of database storage and the resulting forensic artifacts require established standards for artifact storage and viewing mechanisms in order for such advanced analysis tools to be developed. In this paper, we present 1) a standard storage format, Database Forensic File Format (DB3F), for database forensic tools output that follows the guidelines established by other (file system) forensic tools, and 2) a view and search toolkit, Database Forensic Toolkit (DF-Toolkit), that enables the analysis of data stored in our database forensic format. Using our prototype implementation, we demonstrate that our toolkit follows the state-of-the-art design used by current forensic tools and offers easy-to-interpret database artifact search capabilities.  more » « less
Award ID(s):
1656268
PAR ID:
10095214
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
DFRWS 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Database Management Systems (DBMSes) secure data against regular users through defensive mechanisms such as access control, and against privileged users with detection mechanisms such as audit logging. Interestingly, these security mechanisms are built into the DBMS and are thus only useful for monitoring or stopping operations that are executed through the DBMS API. Any access that involves directly modifying database files (at file system level) would, by definition, bypass any and all security layers built into the DBMS itself. In this paper,we propose and evaluate an approach that detects direct modifications to database files that have already bypassed the DBMS and its internal security mechanisms. Our approach applies forensic analysis to first validate database indexes and then compares index state with data in the DBMS tables. We show that indexes are much more difficult to modify and can be further fortified with hashing. Our approach supports most relational DBMSes by leveraging index structures that are already built into the system to detect database storage tampering that would currently remain undetectable. 
    more » « less
  2. Database Management Systems (DBMSes) secure data against regular users through defensive mechanisms such as access control, and against privileged users with detection mechanisms such as audit logging. Interestingly, these security mechanisms are built into the DBMS and are thus only useful for monitoring or stopping operations that are executed through the DBMS API. Any access that involves directly modifying database files (at file system level) would, by definition, bypass any and all security layers built into the DBMS itself. In this paper, we propose and evaluate an approach that detects direct modifications to database files that have already bypassed the DBMS and its internal security mechanisms. Our approach applies forensic analysis to first validate database indexes and then compares index state with data in the DBMS tables. We show that indexes are much more difficult to modify and can be further fortified with hashing. Our approach supports most relational DBMSes by leveraging index structures that are already built into the system to detect database storage tampering that would currently remain undetectable. 
    more » « less
  3. The increasing use of databases in the storage of critical and sensitive information in many organizations has lead to an increase in the rate at which databases are exploited in computer crimes. While there are several techniques and tools available for database forensics, they mostly assume apriori database preparation, such as relying on tamper-detection software to be in place or use of detailed logging. Investigators, alternatively, need forensic tools and techniques that work on poorly-configured databases and make no assumptions about the extent of damage in a database. In this paper, we present DBCarver, a tool for reconstructing database content from a database image without using any log or system metadata. The tool uses page carving to reconstruct both query-able data and non-queryable data (deleted data). We describe how the two kinds of data can be combined to enable a variety of forensic analysis questions hitherto unavailable to forensic investigators. We show the generality and efficiency of our tool across several databases through a set of robust experiments. 
    more » « less
  4. Cyberattacks continue to evolve and adapt to state-of-the-art security mechanisms. Therefore, it is critical for security experts to routinely inspect audit logs to detect complex security breaches. However, if a system was compromised during a cyberattack, the validity of the audit logs themselves cannot necessarily be trusted. Specifically, for a database management system (DBMS), an attacker with elevated privileges may temporarily disable the audit logs, bypassing logging altogether along with any tamper-proof logging mechanisms. Thus, security experts need techniques to validate logs independent of a potentially compromised system to detect security breaches. This paper demonstrates that SQL query operations produce a repeatable set of patterns within DBMS process memory. Operations such as full table scans, index accesses, or joins each produce their own set of distinct forensic artifacts in memory. Given these known patterns, we propose that collecting forensic artifacts from a trusted memory snapshot allows one to reverse-engineer query activity and validate audit logs independent of the DBMS itself and outside the scope of a database administrator's privileges. We rely on the fact the queries must ultimately be processed in memory regardless of any security mechanisms they may have bypassed. This work is generalized to all relational DBMSes by using two representative DBMSes, Oracle and MySQL. 
    more » « less
  5. In file systems and database management systems (DBMSes), deleting data marks it as unallocated storage rather than explicitly erasing data. This data can be reconstructed from raw storage, making it vulnerable to data theft and exposing organizations to liability and compliance risks, violating data retention and destruction policies. The problem is further magnified in DBMSes because (unlike in file systems) DBMS backups are performed in pages and will include such deleted records. Data erasure (or sanitization) is a process that eliminates this vulnerability, providing users with “the right to be forgotten”. However, most of the work in data sanitization is only relevant to erasing data at the file system level, and not in DBMSes. Limited existing work in database sanitization takes an erase-on-commit approach, which can introduce significant I/O bottlenecks. In this paper, we describe a novel data sanitization method, DBSanitizer, that 1) is DBMS agnostic, 2) can batch value erasure, and 3) targets specific data to erase. DBSanitizer is designed as a template for DBMS vendors to support backup sanitization and ensure that no undesirable data is retained in backups. In this paper, we demonstrate how our approach can be used in any row-store relational DBMS (including Oracle, PostgreSQL, MySQL, and SQLite). As there are no backup sanitization tools available on the market or in research literature, we evaluate DBSanitizer, in a live database that supports erase-on-commit sanitization approach. 
    more » « less