skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultra-sharp and surfactant-free silver nanowire for scanning tunneling microscopy and tip-enhanced Raman spectroscopy
Chemically-synthesized single-crystalline silver nanowire (AgNW) probes can combine the scanning tunneling microscopy (STM) technique with tip-enhanced Raman scattering spectroscopy (TERS) for complementary morphological and chemical information with nanoscale spatial resolution. However, its performance has been limited by the blunt nanowire tip geometry, the insulating surfactant layer coating AgNW surfaces, and the thermal-induced mechanical vibrations. Here, we report a reproducible fabrication method for the preparation of sharp-tip AgNW-based TERS probes. By removing the polyvinylpyrrolidone (PVP) surfactant molecules from the AgNW surfaces for stable electrical conductivity and controlling the protruding length with μm-level accuracy for improved mechanical stability, we demonstrate atomic-resolution STM imaging with the sharp-tip AgNW probe. Furthermore, the sharp-tip AgNW has an excellent TER enhancement (∼1.1 × 10 6 ), which is about 66 folds of that achieved by regular AgNWs. Our experiments demonstrate that AgNWs with clean interfaces and the proper tip geometry can provide reliable and reproducible STM and TER characterizations, which remove the hurdles preventing the implementation of AgNW in STM-based near-field optical applications for a broad community.  more » « less
Award ID(s):
1654746 1654794
PAR ID:
10095247
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
11
Issue:
16
ISSN:
2040-3364
Page Range / eLocation ID:
7790 to 7797
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc . With this method, AgNW patterns can be printed on a range of substrates, e.g. paper, polyethylene terephthalate (PET), glass, polydimethylsiloxane (PDMS), etc. First, AgNW samples on PDMS were characterized under bending and stretching. Then AgNW heaters and electrocardiogram (ECG) electrodes were fabricated to demonstrate the potential of this printing technique for AgNW-based flexible and stretchable devices. 
    more » « less
  2. Abstract Silver nanowires (AgNWs) hold great promise for applications in wearable electronics, flexible solar cells, chemical and biological sensors, photonic/plasmonic circuits, and scanning probe microscopy (SPM) due to their unique plasmonic, mechanical, and electronic properties. However, the lifetime, reliability, and operating conditions of AgNW-based devices are significantly restricted by their poor chemical stability, limiting their commercial potentials. Therefore, it is crucial to create a reliable oxidation barrier on AgNWs that provides long-term chemical stability to various optical, electrical, and mechanical devices while maintaining their high performance. Here we report a room-temperature solution-phase approach to grow an ultra-thin, epitaxial gold coating on AgNWs to effectively shield the Ag surface from environmental oxidation. The Ag@Au core-shell nanowires (Ag@Au NWs) remain stable in air for over six months, under elevated temperature and humidity (80 °C and 100% humidity) for twelve weeks, in physiological buffer solutions for three weeks, and can survive overnight treatment of an oxidative solution (2% H 2 O 2 ). The Ag@Au core-shell NWs demonstrated comparable performance as pristine AgNWs in various electronic, optical, and mechanical devices, such as transparent mesh electrodes, surface-enhanced Raman spectroscopy (SERS) substrates, plasmonic waveguides, plasmonic nanofocusing probes, and high-aspect-ratio, high-resolution atomic force microscopy (AFM) probes. These Au@Ag core-shell NWs offer a universal solution towards chemically-stable AgNW-based devices without compromising material property or device performance. 
    more » « less
  3. Abstract Scalable manufacturing of soft electronics with high performance and reliability represents one of the most demanding challenges for the application of soft electronics. Herein, an ecofriendly silver nanowire (AgNW) based ink with cellulose as the binder is reported. The ink properties, annealing condition, and electromechanical properties of the printed electronics are investigated. With a proper annealing process, the hot‐melt binder under high temperatures provides excellent adhesion between the NWs and the substrate, leading to robust electrical performance of the printed AgNWs under mechanical deformation, tape peeling, scratching, and chemical corrosion. The printed AgNWs are demonstrated as flexible temperature sensors due to their temperature‐dependent resistance behavior. The temperature sensors are used to sense touching, respiration, and body temperature. The mechanical robustness and chemical stability of the printed AgNW electronics, without the need of an encapsulation layer, makes them ideal for skin‐mounted electronics applications. 
    more » « less
  4. Abstract The process of tip‐enhanced Raman scattering (TERS) depends critically on the morphology near the apex of the tip used in the experiment. Many tip designs have focused on optimization of electromagnetic enhancement in the near‐field, which is controlled to a large extent by subtle details at the nanoscale that remain difficult to reproduce in the tip fabrication process. The use of focused ion beams (FIB) permit modification of larger features on the tip in a reproducible manner, yet this approach cannot produce sub‐20‐nm structures important for optimum near‐field enhancement. Nonetheless, FIB milling offers excellent opportunities for improving the far‐field radiation properties of the tip‐antenna, a feature that has received relatively little attention in the TERS research community. In this work, we use finite‐difference time‐domain (FDTD) simulations to study both the near‐field and far‐field radiation efficiency of several tip‐antenna systems that can be constructed with FIB techniques in a feasible manner. Starting from blunt etched tips, we find that excellent overall enhancement of the TERS signal can be obtained with pillar‐type tips. Furthermore, by applying vertical grooves on the tip's shaft, the overall efficiency can be improved even more, producing TERS signals that are up to 10‐fold stronger than signals obtained from an ideal (unmodified) sharp tip of 10‐nm radius. The proposed designs constitute a feasible route toward a tip fabrication process that not only yields more reproducible tips but also promises much stronger TERS signals. 
    more » « less
  5. Silver nanowires (AgNWs) have garnered significant attention in nanotechnology due to their unique mechanical and electrical properties and versatile applications. This review explores the synthesis of AgNWs, with a specific focus on the utilization of millifluidic flow reactors (MFRs) as a promising platform for controlled and efficient production. It begins by elucidating the exceptional characteristics and relevance of AgNWs in various technological domains and then delves into the principles and advantages of MFRs by showcasing their pivotal role in enhancing the precision and scalability of nanowire synthesis. Within this review, an overview of the diverse synthetic methods employed for AgNW production using MFRs is provided. Special attention is given to the intricate parameters and factors influencing synthesis and how MFRs offer superior control over these critical variables. Recent advances in this field are highlighted, revealing innovative strategies and promising developments that have emerged. As with any burgeoning field, challenges are expected, so future directions are explored, offering insights into the current limitations and opportunities for further exploration. In conclusion, this review consolidates the state-of-the-art knowledge in AgNW synthesis and emphasizes the critical role of MFRs in shaping the future of nanomaterial production and nanomanufacturing. 
    more » « less