skip to main content


Title: Conference report: 2018 materials and data science hackathon (MATDAT18)
The National Science Foundation (NSF) 2018 Materials and Data Science Hackathon (MATDAT18) took place at the Residence Inn Alexandria Old Town/Duke Street, Alexandria, VA over the period May 30–June 1, 2018. This three-day collaborative “hackathon” or “datathon” brought together teams of materials scientists and data scientists to collaboratively engage materials science problems using data science tools. The materials scientists brought a diversity of problems ranging from inorganic material bandgap prediction to acceleration of ab initio molecular dynamics to quantification of aneurysm risk from blood hydrodynamics. The data scientists contributed tools and expertise in areas such as deep learning, Gaussian process regression, and sequential learning with which to engage these problems. Participants lived and worked together, collaboratively “hacked” for several hours per day, delivered introductory, midpoint, and final presentations and were exposed to presentations and informal interactions with NSF personnel. Social events were organized to facilitate interactions between teams. The primary outcomes of the event were to seed new collaborations between materials and data scientists and generate preliminary results. A separate competitive process enabled participants to apply for exploratory funding to continue work commenced at the hackathon. Anonymously surveyed participants reported a high level of satisfaction with the event, with 100% of respondents indicating that their team will continue to work together into the future and 91% reporting intent to submit a white paper for exploratory funding.  more » « less
Award ID(s):
1748198
NSF-PAR ID:
10095265
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
ISSN:
2058-9689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The National Science Foundation (NSF) 2018 Materials and Data Science Hackathon (MATDAT18) took place at the Residence Inn Alexandria Old Town/Duke Street, Alexandria, VA over the period May 30–June 1, 2018. This three-day collaborative “hackathon” or “datathon” brought together teams of materials scientists and data scientists to collaboratively engage materials science problems using data science tools. The materials scientists brought a diversity of problems ranging from inorganic material bandgap prediction to acceleration of ab initio molecular dynamics to quantification of aneurysm risk from blood hydrodynamics. The data scientists contributed tools and expertise in areas such as deep learning, Gaussian process regression, and sequential learning with which to engage these problems. Participants lived and worked together, collaboratively “hacked” for several hours per day, delivered introductory, midpoint, and final presentations and were exposed to presentations and informal interactions with NSF personnel. Social events were organized to facilitate interactions between teams. The primary outcomes of the event were to seed new collaborations between materials and data scientists and generate preliminary results. A separate competitive process enabled participants to apply for exploratory funding to continue work commenced at the hackathon. Anonymously surveyed participants reported a high level of satisfaction with the event, with 100% of respondents indicating that their team will continue to work together into the future and 91% reporting intent to submit a white paper for exploratory funding. 
    more » « less
  2. The FAIR Hackathon Workshop for Mathematics and the Physical Sciences (MPS) February 27-28, 2019 in Alexandria, Virginia brought together forty-four stakeholders in the physical sciences community to share skills, tools and techniques to FAIRify research data. As one of the first efforts of its kind in the US, the workshop offered participants a way to engage with FAIR principles (Findable, Accessible, Interoperable and Reusable) Data and metrics in the context of a hackathon. The workshop was designed to address issues of public access to data and to provide experience with FAIR tools and relevant hands-on experience for researchers. Existing FAIR tools and infrastructure were introduced. Hands-on hackathon breakout time was devoted to testing FAIR metrics and tools against physical sciences data. The hackathon invited MPS research data management stakeholders to react to the FAIR principles and to jointly consider gaps in the MPS data sharing ecosystem in the context of researcher’s actual projects. FAIR Gap analysis was introduced as a way to identify community-specific tools or infrastructure that could dramatically enhance the ability of domain scientists to make their data more FAIR. 
    more » « less
  3. Hackathons and similar time-bounded events have become a popular form of collaboration in various domains. They are commonly organized as in-person events during which teams engage in intense collaboration over a short period of time to complete a project that is of interest to them. Most research to date has thus consequently focused on studying how teams collaborate in a co-located setting, pointing towards the advantages of radical co-location. The global pandemic of 2020, however, has led to many hackathons moving online, which challenges our current understanding of how they function. In this paper, we address this gap by presenting findings from a multiple-case study of 10 hackathon teams that participated in 4 hackathon events across two continents. By analyzing the collected data, we found that teams merged synchronous and asynchronous means of communication to maintain a common understanding of work progress as well as to maintain awareness of each other's tasks. Task division was self-assigned based on individual skills or interests, while leaders emerged from different strategies (e.g., participant experience, the responsibility of registering the team in an event). Some of the affordances of in-person hackathons, such as the radical co-location of team members, could be partially reproduced in teams that kept open synchronous communication channels while working (i.e., shared audio territories), in a sort of "radical virtual co-location". However, others, such as interactions with other teams, easy access to mentors, and networking with other participants, decreased. In addition, the technical constraints of the different communication tools and platforms brought technical problems and were overwhelming to participants. Our work contributes to understanding the virtual collaboration of small teams in the context of online hackathons and how technologies and event structures proposed by organizers imply this collaboration. 
    more » « less
  4. In this proposal, we will share some initial findings about how teacher and student engagement in cogenerative dialogues influenced the development of the Culturally Relevant Pedagogical Guidelines for Computational Thinking and Computer Science (CRPG-CSCT). The CRPG-CSCT’s purpose is to provide computer science teachers with tools to enhance their instruction by accurately reflecting students’ diverse cultural resources in the classroom. Additionally, the CRPG-CSCT will provide guidance to non-computer science teachers on how to facilitate the integration of computational thinking skills to a broad spectrum of classes in the arts, humanities, sciences, social sciences, and mathematics. Our initial findings shared here are part of a larger NSF-funded research project (Award No. 2122367) which aims to better understand the barriers to entry and challenges for success faced by underrepresented secondary school students in computer science, through direct engagement with the students themselves. Throughout the 2022-23 academic year, the researchers have been working with a small team of secondary school teachers, students, and instructional designers, as well as university faculty in computer science, secondary education, and sociology to develop the CRPG-CSCT. The CRPG-CSCT is rooted in the tenets of culturally relevant pedagogy (Ladson-Billings, 1995) and borrows from Muhammad’s (2020) work in Cultivating Genius: An Equity Framework for Culturally and Historically Responsive Literacy. The CRPG-CCT is being developed over six day-long workshops held throughout the academic year. At the time of this submission, five of the six workshops had been completed. Each workshop utilized cogenerative dialogues (cogens) as the primary tool for organizing and sustaining participants’ engagement. Through cogens, participants more deeply learn about students’ cultural capital and the value of utilizing that capital within the classroom (Roth, Lawless, & Tobin, 2000). The success of cogens relies on following specific protocols (Emdin, 2016), such as listening attentively, ensuring there are equal opportunities for all participants to share, and affirming the experiences of other participants. The goal of a cogen is to reach a collective decision, based on the dialogue, that will positively impact students by explicitly addressing barriers to their engagement in the classroom. During each workshop, one member of the research team and one undergraduate research assistant observed the interactions among cogen participants and documented these in the form of ethnographic field notes. Another undergraduate research assistant took detailed notes during the workshop to record the content of small and large group discussions, presentations, and questions/responses throughout the workshops. A grounded theory approach was used to analyze the field notes. Additionally, at the conclusion of each workshop, participants completed a Cogen Feedback Survey (CFS) to gather additional information. The CFS were analyzed through open thematic coding, memos, and code frequencies. Our preliminary results demonstrate high levels of engagement from teacher and student participants during the workshops. Students identified that the cogen structure allowed them to participate comfortably, openly, and honestly. Further, students described feeling valued and heard. Students’ ideas and experiences were frequently affirmed, which served as an important step toward dismantling traditional teacher-student boundaries that might otherwise prevent them from sharing freely. Another result from the use of cogens was the shared experience of participants comprehending views from the other group’s perspective in the classroom. Students appreciated the opportunity to learn from teachers about their struggles in keeping students engaged. Teachers appreciated the opportunity to better understand students’ schooling experiences and how these may affirm or deny aspects of their identity. Finally, all participants shared meaningful suggestions and strategies for future workshops and for the collective betterment of the group. Initial findings shared here are important for several reasons. First, our findings suggest that cogens are an effective approach for fostering participants’ commitment to creating the conditions for students’ success in the classroom. Within the context of the workshops, cogens provided teachers, students, and faculty with opportunities to engage in authentic conversations for addressing the recruitment and retention problems in computer science for underrepresented students. These conversations often resulted in the development of tangible pedagogical approaches, examples, metaphors, and other strategies to directly address the recruitment and retention of underrepresented students in computer science. Finally, while we are still developing the CRPG-CSCT, cogens provided us with the opportunity to ensure the voices of teachers and students are well represented in and central to the document. 
    more » « less
  5. Eastern Mennonite University received a 5-year S-STEM award for their STEM Scholars Engaging in Local Problems (SSELP) program. The goal of this place-based, interdisciplinary scholarship program is to increase the number of academically talented, low-income students who graduate in STEM fields and either pursue immediate employment in STEM careers or STEM-related service or continue their STEM education in graduate school. In 2018 and 2019, two cohorts of seven students were recruited to major in biology, chemistry, engineering, computer science, mathematics, or environmental science. A key part of recruitment involved on-campus interviews, during a February Scholarship Day, between STEM faculty and potential scholars. As the yield rate for the event is high (54-66%), the university has continued this practice, funding additional STEM scholarships. In order to retain and graduate the scholars in STEM fields, the SSELP faculty designed and carried out various projects and activities to support the students. The SSELP Scholars participated in a first-year STEM Career Practicum class, a one-credit course that connected students with regional STEM practitioners across a variety of fields. The scholars were supported by peer tutors embedded in STEM classes, and now many are tutors themselves. They participated in collaborative projects where the cohorts worked to identify and solve a problem or need in their community. The SSELP scholars were supported by both faculty and peer mentors. Each scholarship recipient was matched with a faculty mentor in addition to an academic advisor. A faculty mentor was in a related STEM field but typically not teaching the student. Each scholar was matched with a peer mentor (junior or senior) in their intended major of study. In addition, community building activities were implemented to provide a significant framework for interaction within the cohort. To evaluate the progress of the SSELP program, multiple surveys were conducted. HERI/CIRP Freshman Survey was used in the fall of 2018 for the first cohort and 2019 for the second cohort. The survey indicated an upward shift in students’ perception of science and in making collaborative effort towards positive change. Preliminary data on the Science Motivation Questionnaire showed that the SSELP scholars began their university studies with lower averages than their non-SSELP STEM peers in almost every area of science motivation. After over three years of implementation of the NSF-funded STEM Scholars Engaging in Local Problems program, the recruitment effort has grown significantly in STEM fields in the university. Within the two cohorts, the most common majors were environmental science and engineering. While 100% of Cohorts 1 and 2 students were retained into the Fall semester of the second year, two students from Cohort 1 left the program between the third and fourth semesters of their studies. While one student from Cohort 2 had a leave of absence, they have returned to continue their studies. The support system formed among the SSELP scholars and between the scholars and faculty has benefited the students in both their academic achievement as well as their personal growth. 
    more » « less