skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid Quantification of Monoclonal Antibody Titer in Cell Culture Harvests by Antibody-Induced Z-ELP-E2 Nanoparticle Cross-Linking
Award ID(s):
1403724
PAR ID:
10095287
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Analytical Chemistry
Volume:
90
Issue:
24
ISSN:
0003-2700
Page Range / eLocation ID:
14447 to 14452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In the global health emergency caused by coronavirus disease 2019 (COVID-19), efficient and specific therapies are urgently needed. Compared with traditional small-molecular drugs, antibody therapies are relatively easy to develop; they are as specific as vaccines in targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); and they have thus attracted much attention in the past few months. This article reviews seven existing antibodies for neutralizing SARS-CoV-2 with 3D structures deposited in the Protein Data Bank (PDB). Five 3D antibody structures associated with the SARS-CoV spike (S) protein are also evaluated for their potential in neutralizing SARS-CoV-2. The interactions of these antibodies with the S protein receptor-binding domain (RBD) are compared with those between angiotensin-converting enzyme 2 and RBD complexes. Due to the orders of magnitude in the discrepancies of experimental binding affinities, we introduce topological data analysis, a variety of network models, and deep learning to analyze the binding strength and therapeutic potential of the 14 antibody–antigen complexes. The current COVID-19 antibody clinical trials, which are not limited to the S protein target, are also reviewed. 
    more » « less
  2. In therapeutic antibody design, achieving a balance between optimizing binding affinity subject to multiple constraints, and sequence diversity within a batch for experimental validation presents an important challenge. Contemporary methods often fall short in simultaneously optimizing these attributes, leading to ineffi- ciencies in experimental exploration and validation. In this work, we tackle this problem using the latest developments in constrained latent space Bayesian op- timization. Our methodology leverages a deep generative model to navigate the discrete space of potential antibody sequences, facilitating the selection of diverse, high-potential candidates for synthesis. We also propose a novel way of training VAEs that leads to a lower dimensional latent space and achieves excellent per- formance under the data-constrained setting. We validate our approach in vitro by synthesizing optimized antibodies, demonstrating consistently high binding affini- ties and preserved thermal stability. 
    more » « less
  3. null (Ed.)