skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Complexes of [(dadi)Ti(L/X)] m That Reveal Redox Non-Innocence and a Stepwise Carbene Insertion into a Carbon–Carbon Bond
Award ID(s):
1664580
PAR ID:
10095341
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Organometallics
Volume:
37
Issue:
20
ISSN:
0276-7333
Page Range / eLocation ID:
3488 to 3501
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract Covalent organic frameworks linked by carbon‐carbon double bonds (C=C COFs) are an emerging class of crystalline, porous, and conjugated polymeric materials with potential applications in organic electronics, photocatalysis, and energy storage. Despite the rapidly growing interest in sp2carbon‐conjugated COFs, only a small number of closely related condensation reactions have been successfully employed for their synthesis to date. Herein, we report the first example of a C=C COF, CORN‐COF‐1 (CORN=Cornell University), prepared byN‐heterocyclic carbene (NHC) dimerization. In‐depth characterization reveals that CORN‐COF‐1 possesses a two‐dimensional layered structure and hexagonal guest‐accessible pores decorated with a high density of strongly reducing tetraazafulvalene linkages. Exposure of CORN‐COF‐1 to tetracyanoethylene (TCNE,E1/2=0.13 V and −0.87 V vs. SCE) oxidizes the COF and encapsulates the radical anion TCNE⋅and the dianion TCNE2−as guest molecules, as confirmed by spectroscopic and magnetic analysis. Notably, the reactive TCNE⋅radical anion, which generally dimerizes in the solid state, is uniquely stabilized within the pores of CORN‐COF‐1. Overall, our findings broaden the toolbox of reactions available for the synthesis of redox‐active C=C COFs, paving the way for the design of novel materials. 
    more » « less