skip to main content


Title: Scrutinizing functional interaction networks from RNA-binding proteins to their targets in cancer
RNA-binding proteins (RBPs) participate in all stages of RNA life cycle from transcription, splicing, to translation. Under the ENCODE project, a large number of RBPs were knocked down in human cancer cell lines, offering an excellent opportunity to infer targets of RBPs. Taking both RBP binding sites and RNA-seq profiles of RBP knockdown samples as input, we present a pipeline to identify causal RBP RNA interactions. The pipeline employs a recent functional chi-square test (FunChisq) that deciphers directional association, and utilizes a novel functional index that measures the effect size of functional dependency. We examined ∼45 million RBP RNA pairs in leukemia (K562) and liver cancer (HepG2) cell lines for functional patterns as causal interaction candidates. Here, we report a total of 936,707 RBP RNA pairs in the two cell lines that show statistically significant linear or nonlinear functional patterns. About 31% of these pairs have supportive biological evidence from other sources, suggesting the effectiveness of the pipeline. The interactions constitute RBP specific regulatory networks that may potentially represent core mechanisms in the two cancers. The pipeline is implemented through an R interface with pre-computed results and data libraries for users to query specific networks and visualize RBP RNA interactions. Such networks serve as a useful resource for studying RNA dysregulation in cancer.  more » « less
Award ID(s):
1661331
NSF-PAR ID:
10095378
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
Page Range / eLocation ID:
185 - 190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Cell type specialization is a hallmark of complex multicellular organisms and is usually established through implementation of cell-type-specific gene expression programs. The multicellular green algaVolvox carterihas just two cell types, germ and soma, that have previously been shown to have very different transcriptome compositions which match their specialized roles. Here we interrogated another potential mechanism for differentiation inV. carteri, cell type specific alternative transcript isoforms (CTSAI).

    Methods

    We used pre-existing predictions of alternative transcripts and de novo transcript assembly with HISAT2 and Ballgown software to compile a list of loci with two or more transcript isoforms, identified a small subset that were candidates for CTSAI, and manually curated this subset of genes to remove false positives. We experimentally verified three candidates using semi-quantitative RT-PCR to assess relative isoform abundance in each cell type.

    Results

    Of the 1978 loci with two or more predicted transcript isoforms 67 of these also showed cell type isoform expression biases. After curation 15 strong candidates for CTSAI were identified, three of which were experimentally verified, and their predicted gene product functions were evaluated in light of potential cell type specific roles. A comparison of genes with predicted alternative splicing fromChlamydomonas reinhardtii, a unicellular relative ofV. carteri, identified little overlap between ortholog pairs with alternative splicing in both species. Finally, we interrogated cell type expression patterns of 126 V. carteripredicted RNA binding protein (RBP) encoding genes and found 40 that showed either somatic or germ cell expression bias. These RBPs are potential mediators of CTSAI inV. carteriand suggest possible pre-adaptation for cell type specific RNA processing and a potential path for generating CTSAI in the early ancestors of metazoans and plants.

    Conclusions

    We predicted numerous instances of alternative transcript isoforms in Volvox, only a small subset of which showed cell type specific isoform expression bias. However, the validated examples of CTSAI supported existing hypotheses about cell type specialization inV. carteri,and also suggested new hypotheses about mechanisms of functional specialization for their gene products. Our data imply that CTSAI operates as a minor but important component ofV. cartericellular differentiation and could be used as a model for how alternative isoforms emerge and co-evolve with cell type specialization.

     
    more » « less
  2. RNA binding proteins (RBPs) regulate all aspects of RNA biogenesis from transcription, splicing, and translation to degradation, and they have a critical role in cellular homeostasis and functional diversity. Recent studies have indicated that altered expressions of RBPs are associated with many human diseases ranging from neurologic disorders to cancer. The transcriptional coregulator yes-associated protein 1 (YAP1), a critical nuclear effector of the mammalian Hippo pathway, regulates cell fate, cell contact, metabolism, and developmental processes. This study demonstrates a link between YAP1 and nucleophosmin1 (NPM1) protein. NPM1 is an RNA-binding protein that regulates many cellular activities, including ribosome biogenesis, RNA processing, chromatin remodeling, DNA repair, and genomic stability. We identified NPM1 from YAP1 protein complexes of androgen-responsive human cancer cells using proteomics approaches. Our proximity ligation assay demonstrated that YAP1 and NPM1 physically interacted with each other. The interaction between YAP1 and NPM1 occurred in cell nuclei and was regulated by androgen hormone signaling. In addition, our GST-pulldown assay demonstrated that NPM1 formed a protein complex with the proline-rich domain of YAP1. Furthermore, our enhanced RNA interactome capture (eRIC) assay showed that androgen also regulated the interaction of RBPs to polyA+ mRNA within the cell. Consistent with this observation, our eRIC assay combined with the mass spectrometry method enabled us to identify distinct RBP patterns in human cancer cells that are genetically related but phenotypically different. These observations indicate that global alterations of RBPs under changing environmental conditions may have essential roles in cellular physiology and disease biology. 
    more » « less
  3. Background: Cell type specialization is a hallmark of complex multicellular organisms and is usually established through implementation of cell-type-specific gene expression programs. The multicellular green alga Volvox carteri has just two cell types, germ and soma, that have previously been shown to have very different transcriptome com- positions which match their specialized roles. Here we interrogated another potential mechanism for differentiation in V. carteri, cell type specific alternative transcript isoforms (CTSAI). Methods: We used pre-existing predictions of alternative transcripts and de novo transcript assembly with HISAT2 and Ballgown software to compile a list of loci with two or more transcript isoforms, identified a small subset that were candidates for CTSAI, and manually curated this subset of genes to remove false positives. We experimentally verified three candidates using semi-quantitative RT-PCR to assess relative isoform abundance in each cell type. Results: Of the 1978 loci with two or more predicted transcript isoforms 67 of these also showed cell type isoform expression biases. After curation 15 strong candidates for CTSAI were identified, three of which were experimen- tally verified, and their predicted gene product functions were evaluated in light of potential cell type specific roles. A comparison of genes with predicted alternative splicing from Chlamydomonas reinhardtii, a unicellular relative of V. carteri, identified little overlap between ortholog pairs with alternative splicing in both species. Finally, we inter- rogated cell type expression patterns of 126 V. carteri predicted RBP encoding genes and found 40 that showed either somatic or germ cell expression bias. These RBPs are potential mediators of CTSAI in V. carteri and suggest possible pre-adaptation for cell type specific RNA processing and a potential path for generating CTSAI in the early ancestors of metazoans and plants. Conclusions: We predicted numerous instances of alternative transcript isoforms in Volvox, only a small subset of which showed cell type specific isoform expression bias. However, the validated examples of CTSAI supported existing hypotheses about cell type specialization in V. carteri, and also suggested new hypotheses about mecha- nisms of functional specialization for their gene products. Our data imply that CTSAI operates as a minor but impor- tant component of V. carteri cellular differentiation and could be used as a model for how alternative isoforms emerge and co-evolve with cell type specialization. 
    more » « less
  4. Abstract Background

    Fusion of RNA-binding proteins (RBPs) to RNA base-editing enzymes (such as APOBEC1 or ADAR) has emerged as a powerful tool for the discovery of RBP binding sites. However, current methods that analyze sequencing data from RNA-base editing experiments are vulnerable to false positives due to off-target editing, genetic variation and sequencing errors.

    Results

    We present FLagging Areas of RNA-editing Enrichment (FLARE), a Snakemake-based pipeline that builds on the outputs of the SAILOR edit site discovery tool to identify regions statistically enriched for RNA editing. FLARE can be configured to analyze any type of RNA editing, including C to U and A to I. We applied FLARE to C-to-U editing data from a RBFOX2-APOBEC1 STAMP experiment, to show that our approach attains high specificity for detecting RBFOX2 binding sites. We also applied FLARE to detect regions of exogenously introduced as well as endogenous A-to-I editing.

    Conclusions

    FLARE is a fast and flexible workflow that identifies significantly edited regions from RNA-seq data. The FLARE codebase is available athttps://github.com/YeoLab/FLARE.

     
    more » « less
  5. Abstract

    Sequence-specific RNA-binding proteins (RBPs) play central roles in splicing decisions. Here, we describe a modular splicing architecture that leverages in vitro-derived RNA affinity models for 79 human RBPs and the annotated human genome to produce improved models of RBP binding and activity. Binding and activity are modeled by separate Motif and Aggregator components that can be mixed and matched, enforcing sparsity to improve interpretability. Training a new Adjusted Motif (AM) architecture on the splicing task not only yields better splicing predictions but also improves prediction of RBP-binding sites in vivo and of splicing activity, assessed using independent data.

     
    more » « less