skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Appetitive reversal learning differences of two honey bee subspecies with different foraging behaviors
We aimed to examine mechanistically the observed foraging differences across two honey bee, Apis mellifera , subspecies using the proboscis extension response assay. Specifically, we compared differences in appetitive reversal learning ability between honey bee subspecies: Apis mellifera caucasica (Pollman), and Apis mellifera syriaca (Skorikov) in a “common garden” apiary. It was hypothesized that specific learning differences could explain previously observed foraging behavior differences of these subspecies: A.m. caucasica switches between different flower color morphs in response to reward variability, and A.m. syriaca does not switch. We suggest that flower constancy allows reduced exposure by minimizing search and handling time, whereas plasticity is important when maximizing harvest in preparation for long winter is at a premium. In the initial or Acquisition phase of the test we examined specifically discrimination learning, where bees were trained to respond to a paired conditioned stimulus with an unconditioned stimulus and not to respond to a second conditioned stimulus that is not followed by an unconditioned stimulus. We found no significant differences among the subspecies in the Acquisition phase in appetitive learning. During the second, Reversal phase of the experiment, where flexibility in association was tested, the paired and unpaired conditioned stimuli were reversed. During the Reversal phase A.m. syriaca showed a reduced ability to learn the reverse association in the appetitive learning task. This observation is consistent with the hypothesis that A.m. syriaca foragers cannot change the foraging choice because of lack of flexibility in appetitive associations under changing contingencies. Interestingly, both subspecies continued responding to the previously rewarded conditioned stimulus in the reversal phase. We discuss potential ecological correlates and molecular underpinnings of these differences in learning across the two subspecies. In addition, in a supplemental experiment we demonstrated that these differences in appetitive reversal learning do not occur in other learning contexts.  more » « less
Award ID(s):
1633184 1707355
PAR ID:
10095616
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
PeerJ
Volume:
6
ISSN:
2167-8359
Page Range / eLocation ID:
e5918
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Previous research looking at expectancy in animals has used various experimental designs focusing on appetitive and avoidance behaviors. In this study, honey bees (Apis mellifera) were tested ina series of three proboscis extension response (PER) experiments to determine to what degree honey bees’ form a cognitive-representation of an unconditioned stimulus (US). Tthe first experiment, bees were presented with either a 2 sec. sucrose US or 2 sec. honey US appetitive reward and the proboscis-extension duration was measured under each scenario. The PER duration was longer for the honey US even though each US was presented for just 2 sec. Honey bees in the second experiment were tested during extinction trials on a conditioned stimulus (CS) of cinnamon or lavender that was paired with either the sucrose US or honey US in the acquisition trials. The proportion of bees showing the PER response to the CS was recorded for each extinction trial for each US scenario, as was the duration of the proboscis extension for each bee. Neither measure differed between the honey US and sucrose US scenarios, In experiment three, bees were presented with a cinnamon or lavender CS paired with either honey US or sucrose US in a set of acquisition trials, but here the US was not given until after the proboscis was retracted. The PER duration after the CS, and again subsequent after the US, were recorded. While the PER duration after the US was longer for honey, the PER duration after the CS did not differ between honey US and sucrose US. 
    more » « less
  2. Octopamine has broad roles within invertebrate nervous systems as a neurohormone, neurotransmitter and neuromodulator. It orchestrates foraging behavior in many insect taxa via effects on feeding, gustatory responsiveness and appetitive learning. Knowledge of how this biogenic amine regulates bee physiology and behavior is based largely on study of a single species, the honey bee, Apis mellifera. Until recently, its role in the foraging ecology and social organization of diverse bee taxa had been unexplored. Bumble bees (Bombus spp.) are a model for research into the neural basis of foraging and learning, but whether octopamine similarly affects sensory and cognitive performance in this genus is not known. To address this gap, we explored the effects of octopamine on gustatory responsiveness and associative learning in Bombus impatiens via conditioning of the Proboscis Extension Reflex (PER) using a visual (color) cue. We found that octopamine had similar effects on bumble bee behavior as previously reported in honey bees, however, higher doses were required to induce these effects. At this higher dose, octopamine lowered bees’ gustatory responsiveness and appeared to enhance associative learning performance during the early phase of our experiment. Adding to recent studies on stingless bees (Meliponini), these findings support the idea that octopamine’s role in reward perception and processing is broadly conserved across Apidae, while pointing towards some differences across systems worth exploring further. 
    more » « less
  3. Abstract Honey bees (Apis melliferaL.) are the primary commercial pollinators across the world. The subspeciesA. m. scutellataoriginated in Africa and was introduced to the Americas in 1956. For the last 60 years, it hybridized successfully with European subspecies, previous residents in the area. The result of this hybridization was called Africanized honey bee (AHB). AHB has spread since then, arriving to Puerto Rico (PR) in 1994. The honey bee population on the island acquired a mosaic of features from AHB or the European honey bee (EHB). AHB in Puerto Rico shows a major distinctive characteristic, docile behavior, and is called gentle Africanized honey bees (gAHB). We used 917 SNPs to examine the population structure, genetic differentiation, origin, and history of range expansion and colonization of gAHB in PR. We compared gAHB to populations that span the current distribution ofA. melliferaworldwide. The gAHB population is shown to be a single population that differs genetically from the examined populations of AHB. Texas and PR groups are the closest genetically. Our results support the hypothesis that the Texas AHB population is the source of gAHB in Puerto Rico. 
    more » « less
  4. When animals learn the association of a conditioned stimulus (CS) with an unconditioned stimulus (US), later presentation of the CS invokes a representation of the US. When the expected US fails to occur, theoretical accounts predict that conditioned inhibition can accrue to any other stimuli that are associated with this change in the US. Empirical work with mammals has confirmed the existence of conditioned inhibition. But the way it is manifested, the conditions that produce it, and determining whether it is the opposite of excitatory conditioning are important considerations. Invertebrates can make valuable contributions to this literature because of the well-established conditioning protocols and access to the central nervous system (CNS) for studying neural underpinnings of behavior. Nevertheless, although conditioned inhibition has been reported, it has yet to be thoroughly investigated in invertebrates. Here, we evaluate the role of the US in producing conditioned inhibition by using proboscis extension response conditioning of the honeybee (Apis mellifera). Specifically, using variations of a “feature-negative” experimental design, we use downshifts in US intensity relative to US intensity used during initial excitatory conditioning to show that an odorant in an odor–odor mixture can become a conditioned inhibitor. We argue that some alternative interpretations to conditioned inhibition are unlikely. However, we show variation across individuals in how strongly they show conditioned inhibition, with some individuals possibly revealing a different means of learning about changes in reinforcement. We discuss how the resolution of these differences is needed to fully understand whether and how conditioned inhibition is manifested in the honeybee, and whether it can be extended to investigate how it is encoded in the CNS. It is also important for extension to other insect models. In particular, work like this will be important as more is revealed of the complexity of the insect brain from connectome projects. 
    more » « less
  5. ABSTRACT Visual learning is vital to the behavioral ecology of the Western honey bee (Apis mellifera). Honey bee workers forage for floral resources, a behavior that requires the learning and long-term memory of visual landmarks, but how these memories are mapped to the brain remains poorly understood. To address this gap in our understanding, we collected bees that successfully learned visual associations in a conditioned aversion paradigm and compared gene expression correlates of memory formation in the mushroom bodies, a higher-order sensory integration center classically thought to contribute to learning, as well as the optic lobes, the primary visual neuropil responsible for sensory transduction of visual information. We quantified expression of CREB and CaMKII, two classical genetic markers of learning, and fen-1, a gene specifically associated with punishment learning in vertebrates. As expected, we found substantial involvement of the mushroom bodies for all three markers but additionally report the involvement of the optic lobes across a similar time course. Our findings imply the molecular involvement of a sensory neuropil during visual associative learning parallel to a higher-order brain region, furthering our understanding of how a tiny brain processes environmental signals. 
    more » « less