We aimed to examine mechanistically the observed foraging differences across two honey bee, Apis mellifera , subspecies using the proboscis extension response assay. Specifically, we compared differences in appetitive reversal learning ability between honey bee subspecies: Apis mellifera caucasica (Pollman), and Apis mellifera syriaca (Skorikov) in a “common garden” apiary. It was hypothesized that specific learning differences could explain previously observed foraging behavior differences of these subspecies: A.m. caucasica switches between different flower color morphs in response to reward variability, and A.m. syriaca does not switch. We suggest that flower constancy allows reduced exposure by minimizing search and handling time, whereas plasticity is important when maximizing harvest in preparation for long winter is at a premium. In the initial or Acquisition phase of the test we examined specifically discrimination learning, where bees were trained to respond to a paired conditioned stimulus with an unconditioned stimulus and not to respond to a second conditioned stimulus that is not followed by an unconditioned stimulus. We found no significant differences among the subspecies in the Acquisition phase in appetitive learning. During the second, Reversal phase of the experiment, where flexibility in association was tested, the paired and unpaired conditioned stimuli were reversed. During the Reversal phase A.m. syriaca showed a reduced ability to learn the reverse association in the appetitive learning task. This observation is consistent with the hypothesis that A.m. syriaca foragers cannot change the foraging choice because of lack of flexibility in appetitive associations under changing contingencies. Interestingly, both subspecies continued responding to the previously rewarded conditioned stimulus in the reversal phase. We discuss potential ecological correlates and molecular underpinnings of these differences in learning across the two subspecies. In addition, in a supplemental experiment we demonstrated that these differences in appetitive reversal learning do not occur in other learning contexts. 
                        more » 
                        « less   
                    
                            
                            Do Honey Bees (Apis mellifera) Form Cognitive Representations of Unconditioned Stimuli?
                        
                    
    
            Previous research looking at expectancy in animals has used various experimental designs focusing on appetitive and avoidance behaviors. In this study, honey bees (Apis mellifera) were tested ina series of three proboscis extension response (PER) experiments to determine to what degree honey bees’ form a cognitive-representation of an unconditioned stimulus (US). Tthe first experiment, bees were presented with either a 2 sec. sucrose US or 2 sec. honey US appetitive reward and the proboscis-extension duration was measured under each scenario. The PER duration was longer for the honey US even though each US was presented for just 2 sec. Honey bees in the second experiment were tested during extinction trials on a conditioned stimulus (CS) of cinnamon or lavender that was paired with either the sucrose US or honey US in the acquisition trials. The proportion of bees showing the PER response to the CS was recorded for each extinction trial for each US scenario, as was the duration of the proboscis extension for each bee. Neither measure differed between the honey US and sucrose US scenarios, In experiment three, bees were presented with a cinnamon or lavender CS paired with either honey US or sucrose US in a set of acquisition trials, but here the US was not given until after the proboscis was retracted. The PER duration after the CS, and again subsequent after the US, were recorded. While the PER duration after the US was longer for honey, the PER duration after the CS did not differ between honey US and sucrose US. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1950805
- PAR ID:
- 10314180
- Date Published:
- Journal Name:
- International Journal of Comparative Psychology
- Volume:
- 33
- ISSN:
- 0889-3667
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Insecticides are a major tool for controlling pest species. Their widespread use results in damage to non-targeted insects, with honey bees particularly at risk. During foraging, honey bees learn and remember floral charac teristics that are associated with food. As insect pollinators, honey bees inadvertently contact chemicals which can have multiple negative impacts. The toxicity of two insecticides from different classes, ethion (47.79 mg a.i. L − 1 ) and hexaflumuron (500 mg a.i.L − 1 ), on learning, memory, and sensory perception were evaluated. We found that oral exposure to ethion had adverse effects on learned proboscis extension toward reward-associated odors and colors. In addition, we showed reduced sucrose consumption and sucrose responsiveness after expo sure. Hexaflumuron also impaired olfactory learning and memory and decreased responsiveness to sucrose and water. Exposure to sub-lethal concentration of the cholinergic organophosphate insecticide, ethion (47.79 mg a.i. L − 1 ), and the field-recommended concentration of hexaflumuron (500 mg a.i.L − 1 ), significantly impaired behavior involved in foraging. Our results suggest that several behavioral characteristics of honey bees be evaluated when testing an insecticide rather than relying on just one behavioral measure.more » « less
- 
            Octopamine has broad roles within invertebrate nervous systems as a neurohormone, neurotransmitter and neuromodulator. It orchestrates foraging behavior in many insect taxa via effects on feeding, gustatory responsiveness and appetitive learning. Knowledge of how this biogenic amine regulates bee physiology and behavior is based largely on study of a single species, the honey bee, Apis mellifera. Until recently, its role in the foraging ecology and social organization of diverse bee taxa had been unexplored. Bumble bees (Bombus spp.) are a model for research into the neural basis of foraging and learning, but whether octopamine similarly affects sensory and cognitive performance in this genus is not known. To address this gap, we explored the effects of octopamine on gustatory responsiveness and associative learning in Bombus impatiens via conditioning of the Proboscis Extension Reflex (PER) using a visual (color) cue. We found that octopamine had similar effects on bumble bee behavior as previously reported in honey bees, however, higher doses were required to induce these effects. At this higher dose, octopamine lowered bees’ gustatory responsiveness and appeared to enhance associative learning performance during the early phase of our experiment. Adding to recent studies on stingless bees (Meliponini), these findings support the idea that octopamine’s role in reward perception and processing is broadly conserved across Apidae, while pointing towards some differences across systems worth exploring further.more » « less
- 
            Ethanol dependency affects the health of more than 15 million adults in the United States of America. Honey bees have been used as a model for ethanol studies because of similarities in neural structure to vertebrates and their complex social behaviors. This study compares honey bee free-flight visitation to a food source after exposure to ethanol in aqueous sucrose. Individual bees were followed making six attachment visits to a test-station containing 1M sucrose. After attachment, honey bees were randomly assigned to one of five groups: 0%, 2.5%, 5%, 10% EtOH, or a staged increase in ethanol concentrations (2.5%, 5%, 10%). The results indicated that honey bees tolerate up to 2.5% EtOH without avoidance or altered behavior, and up to 5% EtOH without avoidance but with slower trips. At 10% ethanol, attrition was 75% by the 18th return trip. Bees in the staged increase in concentration group were more likely to return than bees that were offered 10% ethanol in sucrose solution after attachment. The results of this study imply that ethanol-induced tolerance to the effects of ethanol can be achieved in honey bees through incremental increase in EtOH but only in terms of attrition. Other measures of foraging efficiency did not show ethanol-induced tolerance. Understanding how ethanol tolerance develops in bees may provide insight into these processes in humans with minimized ethical considerations.more » « less
- 
            Abstract In temperate climates, honey bees rely on stored carbohydrates to sustain them throughout the winter. In nature, honey serves as the bees’ source of carbohydrates, but when managed, beekeepers often harvest honey and replace it with cheaper, artificial feed. The effects of alternative carbohydrate sources on colony survival, strength, and individual bee metabolic health are poorly understood. We assessed the impacts of carbohydrate diets (honey, sucrose syrup, high-fructose corn syrup, and invert syrup) on colony winter survival, population size, and worker bee nutritional state (i.e., fat content and gene expression of overwintered bees and emerging callow bees). We observed a nonsignificant trend for greater survival and larger adult population size among colonies overwintered on honey compared to the artificial feeds, with colonies fed high-fructose corn syrup performing particularly poorly. These trends were mirrored in individual bee physiology, with bees from colonies fed honey having significantly larger fat bodies than those from colonies fed high-fructose corn syrup. For bees fed honey or sucrose, we also observed gene expression profiles consistent with a higher nutritional state, associated with physiologically younger individuals. That is, there was significantly higher expression of vitellogenin and insulin-like peptide 2 and lower expression of insulin-like peptide 1 and juvenile hormone acid methyltransferase in the brains of bees that consumed honey or sucrose syrup relative to those that consumed invert syrup or high-fructose corn syrup. These findings further our understanding of the physiological implications of carbohydrate nutrition in honey bees and have applied implications for colony management.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    