skip to main content


Title: Do Honey Bees (Apis mellifera) Form Cognitive Representations of Unconditioned Stimuli?
Previous research looking at expectancy in animals has used various experimental designs focusing on appetitive and avoidance behaviors. In this study, honey bees (Apis mellifera) were tested ina series of three proboscis extension response (PER) experiments to determine to what degree honey bees’ form a cognitive-representation of an unconditioned stimulus (US). Tthe first experiment, bees were presented with either a 2 sec. sucrose US or 2 sec. honey US appetitive reward and the proboscis-extension duration was measured under each scenario. The PER duration was longer for the honey US even though each US was presented for just 2 sec. Honey bees in the second experiment were tested during extinction trials on a conditioned stimulus (CS) of cinnamon or lavender that was paired with either the sucrose US or honey US in the acquisition trials. The proportion of bees showing the PER response to the CS was recorded for each extinction trial for each US scenario, as was the duration of the proboscis extension for each bee. Neither measure differed between the honey US and sucrose US scenarios, In experiment three, bees were presented with a cinnamon or lavender CS paired with either honey US or sucrose US in a set of acquisition trials, but here the US was not given until after the proboscis was retracted. The PER duration after the CS, and again subsequent after the US, were recorded. While the PER duration after the US was longer for honey, the PER duration after the CS did not differ between honey US and sucrose US.  more » « less
Award ID(s):
1950805
NSF-PAR ID:
10314180
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Journal of Comparative Psychology
Volume:
33
ISSN:
0889-3667
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We aimed to examine mechanistically the observed foraging differences across two honey bee, Apis mellifera , subspecies using the proboscis extension response assay. Specifically, we compared differences in appetitive reversal learning ability between honey bee subspecies: Apis mellifera caucasica (Pollman), and Apis mellifera syriaca (Skorikov) in a “common garden” apiary. It was hypothesized that specific learning differences could explain previously observed foraging behavior differences of these subspecies: A.m. caucasica switches between different flower color morphs in response to reward variability, and A.m. syriaca does not switch. We suggest that flower constancy allows reduced exposure by minimizing search and handling time, whereas plasticity is important when maximizing harvest in preparation for long winter is at a premium. In the initial or Acquisition phase of the test we examined specifically discrimination learning, where bees were trained to respond to a paired conditioned stimulus with an unconditioned stimulus and not to respond to a second conditioned stimulus that is not followed by an unconditioned stimulus. We found no significant differences among the subspecies in the Acquisition phase in appetitive learning. During the second, Reversal phase of the experiment, where flexibility in association was tested, the paired and unpaired conditioned stimuli were reversed. During the Reversal phase A.m. syriaca showed a reduced ability to learn the reverse association in the appetitive learning task. This observation is consistent with the hypothesis that A.m. syriaca foragers cannot change the foraging choice because of lack of flexibility in appetitive associations under changing contingencies. Interestingly, both subspecies continued responding to the previously rewarded conditioned stimulus in the reversal phase. We discuss potential ecological correlates and molecular underpinnings of these differences in learning across the two subspecies. In addition, in a supplemental experiment we demonstrated that these differences in appetitive reversal learning do not occur in other learning contexts. 
    more » « less
  2. Octopamine has broad roles within invertebrate nervous systems as a neurohormone, neurotransmitter and neuromodulator. It orchestrates foraging behavior in many insect taxa via effects on feeding, gustatory responsiveness and appetitive learning. Knowledge of how this biogenic amine regulates bee physiology and behavior is based largely on study of a single species, the honey bee, Apis mellifera. Until recently, its role in the foraging ecology and social organization of diverse bee taxa had been unexplored. Bumble bees (Bombus spp.) are a model for research into the neural basis of foraging and learning, but whether octopamine similarly affects sensory and cognitive performance in this genus is not known. To address this gap, we explored the effects of octopamine on gustatory responsiveness and associative learning in Bombus impatiens via conditioning of the Proboscis Extension Reflex (PER) using a visual (color) cue. We found that octopamine had similar effects on bumble bee behavior as previously reported in honey bees, however, higher doses were required to induce these effects. At this higher dose, octopamine lowered bees’ gustatory responsiveness and appeared to enhance associative learning performance during the early phase of our experiment. Adding to recent studies on stingless bees (Meliponini), these findings support the idea that octopamine’s role in reward perception and processing is broadly conserved across Apidae, while pointing towards some differences across systems worth exploring further. 
    more » « less
  3. Animals must learn to ignore stimuli that are irrelevant to survival and attend to ones that enhance survival. When a stimulus regularly fails to be associated with an important consequence, subsequent excitatory learning about that stimulus can be delayed, which is a form of nonassociative conditioning called ‘latent inhibition’. Honey bees show latent inhibition toward an odor they have experienced without association with food reinforcement. Moreover, individual honey bees from the same colony differ in the degree to which they show latent inhibition, and these individual differences have a genetic basis. To investigate the mechanisms that underly individual differences in latent inhibition, we selected two honey bee lines for high and low latent inhibition, respectively. We crossed those lines and mapped a Quantitative Trait Locus for latent inhibition to a region of the genome that contains the tyramine receptor geneAmtyr1[We use Amtyr1 to denote the gene and AmTYR1 the receptor throughout the text.]. We then show that disruption ofAmtyr1signaling either pharmacologically or through RNAi qualitatively changes the expression of latent inhibition but has little or slight effects on appetitive conditioning, and these results suggest that AmTYR1 modulates inhibitory processing in the CNS. Electrophysiological recordings from the brain during pharmacological blockade are consistent with a model that AmTYR1 indirectly regulates at inhibitory synapses in the CNS. Our results therefore identify a distinctAmtyr1-based modulatory pathway for this type of nonassociative learning, and we propose a model for howAmtyr1acts as a gain control to modulate hebbian plasticity at defined synapses in the CNS. We have shown elsewhere how this modulation also underlies potentially adaptive intracolonial learning differences among individuals that benefit colony survival. Finally, our neural model suggests a mechanism for the broad pleiotropy this gene has on several different behaviors.

     
    more » « less
  4. Abstract

    Butterflies use a proboscis, a microfluidic probe engineered by natural selection, to feed on nutritive fluids. The structural configuration of proboscises relates to feeding habits; however, the adaptations that enable proboscis entry into narrow floral corollas lack experimental evidence.

    Here, we investigated proboscis adaptations that enable entry into corollas using funnel‐shaped glass capillary tubes and performed feeding trials with six butterfly species of different feeding habits. Proboscises were either guided (natural treatment) or forced (forced treatment) into the capillary tubes that were filled with a 20% sucrose solution. The treatments were video‐recorded to determine the depth the proboscises reached into the tube and how long they remained there. The results were interpreted in terms of proboscis morphology, friction forces and the material properties of the cuticle.

    In the natural treatment, butterflies classified as flower visitors were more efficient at feeding from the tubes, reaching an average 1.83× deeper into the tubes than the other species and never getting their proboscises stuck. The non‐flower‐visiting species, in contrast, had their proboscises remain in the tube 17× longer than the flower‐visiting species, with 90% of them getting their proboscises at least partially stuck. The butterfly species with generalist feeding habits fed more efficiently than the non‐flower visitors, but less than the flower visitors. A similar pattern was observed in the forced treatment.

    Flower‐visiting butterflies had smoother and more tapered proboscises, lower friction forces and a semi‐circular cross‐section that would reduce bendability and was augmented by a more sclerotized cuticle. Proboscises of flower‐visiting butterflies, therefore, have a suite of adaptations that operate synergistically to optimize their feeding habits.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  5. Ethanol dependency affects the health of more than 15 million adults in the United States of America. Honey bees have been used as a model for ethanol studies because of similarities in neural structure to vertebrates and their complex social behaviors. This study compares honey bee free-flight visitation to a food source after exposure to ethanol in aqueous sucrose. Individual bees were followed making six attachment visits to a test-station containing 1M sucrose. After attachment, honey bees were randomly assigned to one of five groups: 0%, 2.5%, 5%, 10% EtOH, or a staged increase in ethanol concentrations (2.5%, 5%, 10%). The results indicated that honey bees tolerate up to 2.5% EtOH without avoidance or altered behavior, and up to 5% EtOH without avoidance but with slower trips. At 10% ethanol, attrition was 75% by the 18th return trip. Bees in the staged increase in concentration group were more likely to return than bees that were offered 10% ethanol in sucrose solution after attachment. The results of this study imply that ethanol-induced tolerance to the effects of ethanol can be achieved in honey bees through incremental increase in EtOH but only in terms of attrition. Other measures of foraging efficiency did not show ethanol-induced tolerance. Understanding how ethanol tolerance develops in bees may provide insight into these processes in humans with minimized ethical considerations. 
    more » « less