Android devices, handling sensitive data like call records and text messages, are prone to privacy breaches. Existing information flow tracking systems face difficulties in detecting these breaches due to two main challenges: the multi-layered Android platform using different programming languages (Java and C/C++), and the complex, event-driven execution flow of Android apps that complicates tracking, especially across these language barriers. Our system, DryJIN, addresses this by effectively tracking information flow within and across both Java and native modules. Utilizing symbolic execution for native code data flows and integrating it with Java data flows, DryJIN enhances existing static analysis techniques (Argus-SAF, JuCify, and FlowDroid) to cover previously unaddressed information flow patterns. We validated DryJIN ’s effectiveness through a comprehensive evaluation on over 168k apps, including malware and real-world apps, demonstrating its superiority over current state-of-the-art methods.
more »
« less
VACCINE: Using Contextual Integrity For Data Leakage Detection
Modern enterprises rely on Data Leakage Prevention (DLP) systems to enforce privacy policies that prevent unintentional flow of sensitive information to unauthorized entities. However, these systems operate based on rule sets that are limited to syntactic analysis and therefore completely ignore the semantic relationships between participants involved in the information exchanges. For similar reasons, these systems cannot enforce complex privacy policies that require temporal reasoning about events that have previously occurred. To address these limitations, we advocate a new design methodology for DLP systems centered on the notion of Contextual Integrity (CI).We use the CI framework to abstract real-world communication exchanges into formally defined information flows where privacy policies describe sequences of admissible flows. CI allows us to decouple (1) the syntactic extraction of flows from information exchanges, and (2) the enforcement of privacy policies on these flows. We applied this approach to built VACCINE, a DLP auditing system for emails. VACCINE uses state-of-the-art techniques in natural language processing to extract flows from email text. It also provides a declarative language for describing privacy policies. These policies are automatically compiled to operational rules that the system uses for detecting data leakages. We evaluated VACCINE on the Enron email corpus and show that it improves over the state of the art both in terms of the expressivity of the policies that DLP systems can enforce as well as its precision in detecting data leakages.
more »
« less
- Award ID(s):
- 1704527
- PAR ID:
- 10095711
- Date Published:
- Journal Name:
- Proceedings of the 2019 World Wide Web Conference
- Page Range / eLocation ID:
- 1702 to 1712
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Internet of Things is growing rapidly, with many connected devices now available to consumers. With this growth, the IoT apps that manage the devices from smartphones raise significant security concerns. Typically, these apps are secured via sensitive credentials such as email and password that need to be validated through specific servers, thus requiring permissions to access the Internet. Unfortunately, even when developers of these apps are well-intentioned, such apps can be non-trivial to secure so as to guarantee that user’s credentials do not leak to unauthorized servers on the Internet. For example, if the app relies on third-party libraries, as many do, those libraries can potentially capture and leak sensitive credentials. Bugs in the applications can also result in exploitable vulnerabilities that leak credentials. This paper presents our work in-progress on a prototype that enables developers to control how information flows within the app from sensitive UI data to specific servers. We extend FlowFence to enforce fine-grained information flow policies on sensitive UI data.more » « less
-
null (Ed.)With the growth of Internet in many different aspects of life, users are required to share private information more than ever. Hence, users need a privacy management tool that can enforce complex and customized privacy policies. In this paper, we propose a privacy management system that not only allows users to define complex privacy policies for data sharing actions, but also monitors users' behavior and relationships to generate realistic policies. In addition, the proposed system utilizes formal modeling and model-checking approach to prove that information disclosures are valid and privacy policies are consistent with one anothermore » « less
-
Internet of Things is growing rapidly, with many connected devices now available to consumers. With this growth, the IoT apps that manage the devices from smartphones raise significant security concerns. Typically, these apps are secured via sensitive credentials such as email and password that need to be validated through specific servers, thus requiring permissions to access the Internet. Unfortunately, even when developers of these apps are well-intentioned, such apps can be non-trivial to secure so as to guarantee that user’s credentials do not leak to unauthorized servers on the Internet. For example, if the app relies on third-party libraries, as many do, those libraries can potentially capture and leak sensitive credentials. Bugs in the applications can also result in exploitable vulnerabilities that leak credentials. This paper presents our work in-progress on a prototype that enables developers to control how information flows within the app from sensitive UI data to specific servers. We extend FlowFence to enforce fine-grained information flow policies on sensitive UI data. A version of the paper is also available at: https://arxiv.org/abs/1810.13367. The final version is available at: https://portaldeconteudo.sbc.org.br/index.php/sbseg/article/view/4263more » « less
-
According to the theory of contextual integrity (CI), privacy norms prescribe information flows with reference to five parameters — sender, recipient, subject, information type, and transmission principle. Because privacy is grasped contextually (e.g., health, education, civic life, etc.), the values of these parameters range over contextually meaningful ontologies — of information types (or topics) and actors (subjects, senders, and recipients), in contextually defined capacities. As an alternative to predominant approaches to privacy, which were ineffective against novel information practices enabled by IT, CI was able both to pinpoint sources of disruption and provide grounds for either accepting or rejecting them. Mounting challenges from a burgeoning array of networked, sensor-enabled devices (IoT) and data-ravenous machine learning systems, similar in form though magnified in scope, call for renewed attention to theory. This Article introduces the metaphor of a data (food) chain to capture the nature of these challenges. With motion up the chain, where data of higher order is inferred from lower-order data, the crucial question is whether privacy norms governing lower-order data are sufficient for the inferred higher-order data. While CI has a response to this question, a greater challenge comes from data primitives, such as digital impulses of mouse clicks, motion detectors, and bare GPS coordinates, because they appear to have no meaning. Absent a semantics, they escape CI’s privacy norms entirely.more » « less
An official website of the United States government

