Adversarial machine learning research has recently demonstrated the feasibility to confuse automatic speech recognition (ASR) models by introducing acoustically imperceptible perturbations to audio samples. To help researchers and practitioners gain better understanding of the impact of such attacks, and to provide them with tools to help them more easily evaluate and craft strong defenses for their models, we present Adagio, the first tool designed to allow interactive experimentation with adversarial attacks and defenses on an ASR model in real time, both visually and aurally. Adagio incorporates AMR and MP3 audio compression techniques as defenses, which users can interactively apply to attacked audio samples. We show that these techniques, which are based on psychoacoustic principles, effectively eliminate targeted attacks, reducing the attack success rate from 92.5% to 0%. We will demonstrate Adagio and invite the audience to try it on the Mozilla Common Voice dataset. Code related to this paper is available at: https://github.com/nilakshdas/ADAGIO. 
                        more » 
                        « less   
                    
                            
                            Compression to the Rescue: Defending from Adversarial Attacks Across Modalities
                        
                    
    
            Research in the upcoming field of adversarial ML has revealed that machine learning, especially deep learning, is highly vulnerable to imperceptible adversarial perturbations, both in the domain of vision as well as speech. This has induced an urgent need to devise fast and practical approaches to secure deep learning models from adversarial attacks, so that they can be safely deployed in real-world applications. In this showcase, we put forth the idea of compression as a viable solution to defend against adversarial attacks across modalities. Since most of these attacks depend on the gradient of the model to craft an adversarial instance, compression, which is usually non-differentiable, denies a useful gradient to the attacker. In the vision domain we have JPEG compression, and in the audio domain we have MP3 compression and AMR encoding -- all widely adopted techniques that have very fast implementations on most platforms, and can be feasibly leveraged as defenses. We will show the effectiveness of these techniques against adversarial attacks through live demonstrations, both for vision as well as speech. These demonstrations would include real-time computation of adversarial perturbations for images and audio, as well as interactive application of compression for defense. We would invite and encourage the audience to experiment with their own images and audio samples during the demonstrations. This work was undertaken jointly by researchers from Georgia Institute of Technology and Intel Corporation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1704701
- PAR ID:
- 10095923
- Date Published:
- Journal Name:
- ACM SIGKDD Conference on Knowledge Discovery and Data Mining
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Neural models enjoy widespread use across a variety of tasks and have grown to become crucial components of many industrial systems. Despite their effectiveness and ex- tensive popularity, they are not without their exploitable flaws. Initially applied to computer vision systems, the generation of adversarial examples is a process in which seemingly imper- ceptible perturbations are made to an image, with the purpose of inducing a deep learning based classifier to misclassify the image. Due to recent trends in speech processing, this has become a noticeable issue in speech recognition models. In late 2017, an attack was shown to be quite effective against the Speech Commands classification model. Limited-vocabulary speech classifiers, such as the Speech Commands model, are used quite frequently in a variety of applications, particularly in managing automated attendants in telephony contexts. As such, adversarial examples produced by this attack could have real-world consequences. While previous work in defending against these adversarial examples has investigated using audio preprocessing to reduce or distort adversarial noise, this work explores the idea of flooding particular frequency bands of an audio signal with random noise in order to detect adversarial examples. This technique of flooding, which does not require retraining or modifying the model, is inspired by work done in computer vision and builds on the idea that speech classifiers are relatively robust to natural noise. A combined defense incorporating 5 different frequency bands for flooding the signal with noise outperformed other existing defenses in the audio space, detecting adversarial examples with 91.8% precision and 93.5% recall.more » « less
- 
            Automatic Speech Recognition (ASR) systems are widely used in various online transcription services and personal digital assistants. Emerging lines of research have demonstrated that ASR systems are vulnerable to hidden voice commands, i.e., audio that can be recognized by ASRs but not by humans. Such attacks, however, often either highly depend on white-box knowledge of a specific machine learning model or require special hardware to construct the adversarial audio. This paper proposes a new model-agnostic and easily-constructed attack, called CommanderGabble, which uses fast speech to camouflage voice commands. Both humans and ASR systems often misinterpret fast speech, and such misinterpretation can be exploited to launch hidden voice command attacks. Specifically, by carefully manipulating the phonetic structure of a target voice command, ASRs can be caused to derive a hidden meaning from the manipulated, high-speed version. We implement the discovered attacks both over-the-wire and over-the-air, and conduct a suite of experiments to demonstrate their efficacy against 7 practical ASR systems. Our experimental results show that the over-the-wire attacks can disguise as many as 96 out of 100 tested voice commands into adversarial ones, and that the over-the-air attacks are consistently successful for all 18 chosen commands in multiple real-world scenarios.more » « less
- 
            An adversarial attack is an exploitative process in which minute alterations are made to natural inputs, causing the inputs to be misclassified by neural models. In the field of speech recognition, this has become an issue of increasing significance. Although adversarial attacks were originally introduced in computer vision, they have since infiltrated the realm of speech recognition. In 2017, a genetic attack was shown to be quite potent against the Speech Commands Model. Limited-vocabulary speech classifiers, such as the Speech Commands Model, are used in a variety of applications, particularly in telephony; as such, adversarial examples produced by this attack pose as a major security threat. This paper explores various methods of detecting these adversarial examples with combinations of audio preprocessing. One particular combined defense incorporating compressions, speech coding, filtering, and audio panning was shown to be quite effective against the attack on the Speech Commands Model, detecting audio adversarial examples with 93.5% precision and 91.2% recall.more » « less
- 
            null (Ed.)Despite achieving remarkable performance, deep graph learning models, such as node classification and network embedding, suffer from harassment caused by small adversarial perturbations. However, the vulnerability analysis of graph matching under adversarial attacks has not been fully investigated yet. This paper proposes an adversarial attack model with two novel attack techniques to perturb the graph structure and degrade the quality of deep graph matching: (1) a kernel density estimation approach is utilized to estimate and maximize node densities to derive imperceptible perturbations, by pushing attacked nodes to dense regions in two graphs, such that they are indistinguishable from many neighbors; and (2) a meta learning-based projected gradient descent method is developed to well choose attack starting points and to improve the search performance for producing effective perturbations. We evaluate the effectiveness of the attack model on real datasets and validate that the attacks can be transferable to other graph learning models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    