Neural models enjoy widespread use across a variety of tasks and have grown to become crucial components of many industrial systems. Despite their effectiveness and ex- tensive popularity, they are not without their exploitable flaws. Initially applied to computer vision systems, the generation of adversarial examples is a process in which seemingly imper- ceptible perturbations are made to an image, with the purpose of inducing a deep learning based classifier to misclassify the image. Due to recent trends in speech processing, this has become a noticeable issue in speech recognition models. In late 2017, an attack was shown to be quite effective against the Speech Commands classification model. Limited-vocabulary speech classifiers, such as the Speech Commands model, are used quite frequently in a variety of applications, particularly in managing automated attendants in telephony contexts. As such, adversarial examples produced by this attack could have real-world consequences. While previous work in defending against these adversarial examples has investigated using audio preprocessing to reduce or distort adversarial noise, this work explores the idea of flooding particular frequency bands of an audio signal with random noise in order to detect adversarial examples. This technique of flooding, which does not require retraining or modifying the model, is inspired by work done in computer vision and builds on the idea that speech classifiers are relatively robust to natural noise. A combined defense incorporating 5 different frequency bands for flooding the signal with noise outperformed other existing defenses in the audio space, detecting adversarial examples with 91.8% precision and 93.5% recall.
more »
« less
Isolated and Ensemble Audio Preprocessing Methods for Detecting Adversarial Examples against Automatic Speech Recognition
An adversarial attack is an exploitative process in which minute alterations are made to natural inputs, causing the inputs to be misclassified by neural models. In the field of speech recognition, this has become an issue of increasing significance. Although adversarial attacks were originally introduced in computer vision, they have since infiltrated the realm of speech recognition. In 2017, a genetic attack was shown to be quite potent against the Speech Commands Model. Limited-vocabulary speech classifiers, such as the Speech Commands Model, are used in a variety of applications, particularly in telephony; as such, adversarial examples produced by this attack pose as a major security threat. This paper explores various methods of detecting these adversarial examples with combinations of audio preprocessing. One particular combined defense incorporating compressions, speech coding, filtering, and audio panning was shown to be quite effective against the attack on the Speech Commands Model, detecting audio adversarial examples with 93.5% precision and 91.2% recall.
more »
« less
- Award ID(s):
- 1659788
- PAR ID:
- 10098863
- Date Published:
- Journal Name:
- Conference on Computational Linguistics and Speech Processing (ROCLING)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite remarkable improvements, automatic speech recognition is susceptible to adversarial perturbations. Compared to standard machine learning architectures, these attacks are significantly more challenging, especially since the inputs to a speech recognition system are time series that contain both acoustic and linguistic properties of speech. Extracting all recognition-relevant information requires more complex pipelines and an ensemble of specialized components. Consequently, an attacker needs to consider the entire pipeline. In this paper, we present VENOMAVE, the first training- time poisoning attack against speech recognition. Similar to the predominantly studied evasion attacks, we pursue the same goal: leading the system to an incorrect and attacker-chosen transcription of a target audio waveform. In contrast to evasion attacks, however, we assume that the attacker can only manipulate a small part of the training data without altering the target audio waveform at runtime. We evaluate our attack on two datasets: TIDIGITS and Speech Commands. When poisoning less than 0.17% of the dataset, VENOMAVE achieves attack success rates of more than 80.0%, without access to the victim’s network architecture or hyperparameters. In a more realistic scenario, when the target audio waveform is played over the air in different rooms, VENOMAVE maintains a success rate of up to 73.3%. Finally, VENOMAVE achieves an attack transferability rate of 36.4% between two different model architectures.more » « less
-
The robustness and vulnerability of Deep Neural Networks (DNN) are quickly becoming a critical area of interest since these models are in widespread use across real-world applications (i.e., image and audio analysis, recommendation system, natural language analysis, etc.). A DNN's vulnerability is exploited by an adversary to generate data to attack the model; however, the majority of adversarial data generators have focused on image domains with far fewer work on audio domains. More recently, audio analysis models were shown to be vulnerable to adversarial audio examples (e.g., speech command classification, automatic speech recognition, etc.). Thus, one urgent open problem is to detect adversarial audio reliably. In this contribution, we incorporate a separate and yet related DNN technique to detect adversarial audio, namely model quantization. Then we propose an algorithm to detect adversarial audio by using a DNN's quantization error. Specifically, we demonstrate that adversarial audio typically exhibits a larger activation quantization error than benign audio. The quantization error is measured using character error rates. We use the difference in errors to discriminate adversarial audio. Experiments with three the-state-of-the-art audio attack algorithms against the DeepSpeech model show our detection algorithm achieved high accuracy on the Mozilla dataset.more » « less
-
Automatic Speech Recognition (ASR) systems are widely used in various online transcription services and personal digital assistants. Emerging lines of research have demonstrated that ASR systems are vulnerable to hidden voice commands, i.e., audio that can be recognized by ASRs but not by humans. Such attacks, however, often either highly depend on white-box knowledge of a specific machine learning model or require special hardware to construct the adversarial audio. This paper proposes a new model-agnostic and easily-constructed attack, called CommanderGabble, which uses fast speech to camouflage voice commands. Both humans and ASR systems often misinterpret fast speech, and such misinterpretation can be exploited to launch hidden voice command attacks. Specifically, by carefully manipulating the phonetic structure of a target voice command, ASRs can be caused to derive a hidden meaning from the manipulated, high-speed version. We implement the discovered attacks both over-the-wire and over-the-air, and conduct a suite of experiments to demonstrate their efficacy against 7 practical ASR systems. Our experimental results show that the over-the-wire attacks can disguise as many as 96 out of 100 tested voice commands into adversarial ones, and that the over-the-air attacks are consistently successful for all 18 chosen commands in multiple real-world scenarios.more » « less
-
Automatic Speech Recognition (ASR) systems convert speech into text and can be placed into two broad categories: traditional and fully end-to-end. Both types have been shown to be vulnerable to adversarial audio examples that sound benign to the human ear but force the ASR to produce malicious transcriptions. Of these attacks, only the "psychoacoustic" attacks can create examples with relatively imperceptible perturbations, as they leverage the knowledge of the human auditory system. Unfortunately, existing psychoacoustic attacks can only be applied against traditional models, and are obsolete against the newer, fully end-to-end ASRs. In this paper, we propose an equalization-based psychoacoustic attack that can exploit both traditional and fully end-to-end ASRs. We successfully demonstrate our attack against real-world ASRs that include DeepSpeech and Wav2Letter. Moreover, we employ a user study to verify that our method creates low audible distortion. Specifically, 80 of the 100 participants voted in favor of all our attack audio samples as less noisier than the existing state-of-the-art attack. Through this, we demonstrate both types of existing ASR pipelines can be exploited with minimum degradation to attack audio quality.more » « less