skip to main content

Title: Application Provisioning in FOG Computing-enabled Internet-of-Things: A Network Perspective
The emergence of the Internet-of-Things (IoT) has inspired numerous new applications. However, due to the limited resources in current IoT infrastructures and the stringent quality-of-service requirements of the applications, providing computing and communication supports for the applications is becoming increasingly difficult. In this paper, we consider IoT applications that receive continuous data streams from multiple sources in the network, and study joint application placement and data routing to support all data streams with both bandwidth and delay guarantees. We formulate the application provisioning problem both for a single application and for multiple applications, with both cases proved to be NP-hard. For the case with a single application, we propose a fully polynomial-time approximation scheme. For the multi-application scenario, if the applications can be parallelized among multiple distributed instances, we propose a fully polynomial-time approximation scheme; for general non-parallelizable applications, we propose a randomized algorithm and analyze its performance. Simulations show that the proposed algorithms greatly improve the quality-of-service of the IoT applications compared to the heuristics.
; ;
Award ID(s):
1704092 1461886
Publication Date:
Journal Name:
Page Range or eLocation-ID:
783 to 791
Sponsoring Org:
National Science Foundation
More Like this
  1. Advances in virtualization technologies and edge computing have inspired a new paradigm for Internet-of-Things (IoT) application development. By breaking a monolithic application into loosely coupled microservices, great gain can be achieved in performance, flexibility and robustness. In this paper, we study the important problem of load balancing across IoT microservice instances. A key difficulty in this problem is the interdependencies among microservices: the load on a successor microservice instance directly depends on the load distributed from its predecessor microservice instances. We propose a graph-based model for describing the load dependencies among microservices. Based on the model, we first propose a basic formulation for load balancing, which can be solved optimally in polynomial time. The basic model neglects the quality-of-service (QoS) of the IoT application. We then propose a QoS-aware load balancing model, based on a novel abstraction that captures a realization of the application’s internal logic. The QoS-aware load balancing problem is NP-hard. We propose a fully polynomialtime approximation scheme for the QoS-aware problem. We show through simulation experiments that our proposed algorithm achieves enhanced QoS compared to heuristic solutions.
  2. 5G services and applications explicitly reserve compute and network resources in today’s complex and dynamic infrastructure of multi-tiered computing and cellular networking to ensure application-specific service quality metrics, and the infrastructure providers charge the 5G services for the resources reserved. A static, one-time reservation of resources at service deployment typically results in extended periods of under-utilization of reserved resources during the lifetime of the service operation. This is due to a plethora of reasons like changes in content from the IoT sensors (for example, change in number of people in the field of view of a camera) or a change in the environmental conditions around the IoT sensors (for example, time of the day, rain or fog can affect data acquisition by sensors). Under-utilization of a specific resource like compute can also be due to temporary inadequate availability of another resource like the network bandwidth in a dynamic 5G infrastructure. We propose a novel Reinforcement Learning-based online method to dynamically adjust an application’s compute and network resource reservations to minimize under-utilization of requested resources, while ensuring acceptable service quality metrics. We observe that a complex application-specific coupling exists between the compute and network usage of an application. Our proposed methodmore »learns this coupling during the operation of the service, and dynamically modulates the compute and network resource requests to minimize under-utilization of reserved resources. Through experimental evaluation using real-world video analytics application, we show that our technique is able to capture complex compute-network coupling relationship in an online manner i.e. while the application is running, and dynamically adapts and saves up to 65% compute and 93% network resources on average (over multiple runs), without significantly impacting application accuracy.« less
  3. We develop a variant of the multinomial logit model with impatient customers and study assortment optimization and pricing problems under this choice model. In our choice model, a customer incrementally views the assortment of available products in multiple stages. The patience level of a customer determines the maximum number of stages in which the customer is willing to view the assortments of products. In each stage, if the product with the largest utility provides larger utility than a minimum acceptable utility, which we refer to as the utility of the outside option, then the customer purchases that product right away. Otherwise, the customer views the assortment of products in the next stage as long as the customer’s patience level allows the customer to do so. Under the assumption that the utilities have the Gumbel distribution and are independent, we give a closed-form expression for the choice probabilities. For the assortment-optimization problem, we develop a polynomial-time algorithm to find the revenue-maximizing sequence of assortments to offer. For the pricing problem, we show that, if the sequence of offered assortments is fixed, then we can solve a convex program to find the revenue-maximizing prices, with which the decision variables are the probabilitiesmore »that a customer reaches different stages. We build on this result to give a 0.878-approximation algorithm when both the sequence of assortments and the prices are decision variables. We consider the assortment-optimization problem when each product occupies some space and there is a constraint on the total space consumption of the offered products. We give a fully polynomial-time approximation scheme for this constrained problem. We use a data set from Expedia to demonstrate that incorporating patience levels, as in our model, can improve purchase predictions. We also check the practical performance of our approximation schemes in terms of both the quality of solutions and the computation times.« less
  4. An increasing number of big data applications in various domains generate datasets continuously, which must be processed for various purposes in a timely manner. As one of the most popular streaming data processing systems, Spark Streaming applies a batch-based mechanism, which receives real-time input data streams and divides the data into multiple batches before passing them to Spark processing engine. As such, inappropriate system configurations including batch interval and executor count may lead to unstable states, hence undermining the capability and efficiency of real-time computing. Hence, determining suitable configurations is crucial to the performance of such systems. Many machine learning- and search-based algorithms have been proposed to provide configuration recommendations for streaming applications where input data streams are fed at a constant speed, which, however, is extremely rare in practice. Most real-life streaming applications process data streams arriving at a time-varying rate and hence require real-time system monitoring and continuous configuration adjustment, which still remains largely unexplored. We propose a novel streaming optimization scheme based on Simultaneous Perturbation Stochastic Approximation (SPSA), referred to as NoStop, which dynamically tunes system configurations to optimize real-time system performance with negligible overhead and proved convergence. The performance superiority of NoStop is illustrated by real-lifemore »experiments in comparison with Bayesian Optimization and Spark Back Pressure solutions. Extensive experimental results show that NoStop is able to keep track of the changing pattern of input data in real time and provide optimal configuration settings to achieve the best system performance. This optimization scheme could also be applied to other streaming data processing engines with tunable parameters.« less
  5. The replenishment storage problem (RSP) is to minimize the storage capacity requirement for a deterministic demand, multi-item inventory system, where each item has a given reorder size and cycle length. We consider the discrete RSP, where reorders can only take place at an integer time unit within the cycle. Discrete RSP was shown to be NP-hard for constant joint cycle length (the least common multiple of the length of all individual cycles). We show here that discrete RSP is weakly NP-hard for constant joint cycle length and prove that it is strongly NP-hard for nonconstant joint cycle length. For constant joint cycle-length discrete RSP, we further present a pseudopolynomial time algorithm that solves the problem optimally and the first known fully polynomial time approximation scheme (FPTAS) for the single-cycle RSP. The scheme is utilizing a new integer programming formulation of the problem that is introduced here. For the strongly NP-hard RSP with nonconstant joint cycle length, we provide a polynomial time approximation scheme (PTAS), which for any fixed [Formula: see text], provides a linear time [Formula: see text] approximate solution. The continuous RSP, where reorders can take place at any time within a cycle, seems (with our results) to bemore »easier than the respective discrete problem. We narrow the previously known complexity gap between the continuous and discrete versions of RSP for the multi-cycle RSP (with either constant or nonconstant cycle length) and the single-cycle RSP with constant cycle length and widen the gap for single-cycle RSP with nonconstant cycle length. For the multi-cycle case and constant joint cycle length, the complexity status of continuous RSP is open, whereas it is proved here that the discrete RSP is weakly NP-hard. Under our conjecture that the continuous RSP is easier than the discrete one, this implies that continuous RSP on multi-cycle and constant joint cycle length (currently of unknown complexity status) is at most weakly NP-hard.« less