skip to main content


Search for: All records

Award ID contains: 1461886

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Spatial crowdsourcing (SC) enables task owners (TOs) to outsource spatial-related tasks to a SC-server who engages mobile users in collecting sensing data at some specified locations with their mobile devices. Data aggregation, as a specific SC task, has drawn much attention in mining the potential value of the massive spatial crowdsensing data. However, the release of SC tasks and the execution of data aggregation may pose considerable threats to the privacy of TOs and mobile users, respectively. Besides, it is nontrivial for the SC-server to allocate numerous tasks efficiently and accurately to qualified mobile users, as the SC-server has no knowledge about the entire geographical user distribution. To tackle these issues, in this paper, we introduce a fog-assisted SC architecture, in which many fog nodes deployed in different regions can assist the SC-server to distribute tasks and aggregate data in a privacy-aware manner. Specifically, a privacy-aware task allocation and data aggregation scheme (PTAA) is proposed leveraging bilinear pairing and homomorphic encryption. PTAA supports representative aggregate statistics (e.g.,sum, mean, variance, and minimum) with efficient data update while providing strong privacy protection. Security analysis shows that PTAA can achieve the desirable security goals. Extensive experiments also demonstrate its feasibility and efficiency. 
    more » « less
  2. Advances in virtualization technologies and edge computing have inspired a new paradigm for Internet-of-Things (IoT) application development. By breaking a monolithic application into loosely coupled microservices, great gain can be achieved in performance, flexibility and robustness. In this paper, we study the important problem of load balancing across IoT microservice instances. A key difficulty in this problem is the interdependencies among microservices: the load on a successor microservice instance directly depends on the load distributed from its predecessor microservice instances. We propose a graph-based model for describing the load dependencies among microservices. Based on the model, we first propose a basic formulation for load balancing, which can be solved optimally in polynomial time. The basic model neglects the quality-of-service (QoS) of the IoT application. We then propose a QoS-aware load balancing model, based on a novel abstraction that captures a realization of the application’s internal logic. The QoS-aware load balancing problem is NP-hard. We propose a fully polynomialtime approximation scheme for the QoS-aware problem. We show through simulation experiments that our proposed algorithm achieves enhanced QoS compared to heuristic solutions. 
    more » « less
  3. Popularization of the Internet-of-Things (IoT) has brought widespread concerns on IoT security, especially in face of several recent security incidents related to IoT devices. Due to the resource-constrained nature of many IoT devices, security offloading has been proposed to provide good-enough security for IoT with minimum overhead on the devices. In this paper, we investigate the inevitable risk associated with security offloading: the unprotected and unmonitored transmission from IoT devices to the offloaded security mechanisms. An important challenge in modeling the security risk is the dynamic nature of IoT due to demand fluctuations and infrastructure instability. We propose a stochastic model to capture both the expected and worst-case security risks of an IoT system. We then propose a framework to efficiently address the optimal robust deployment of security mechanisms in IoT. We use results from extensive simulations to demonstrate the superb performance and efficiency of our approach compared to several other algorithms. 
    more » « less
  4. The emergence of the Internet-of-Things (IoT) has inspired numerous new applications. However, due to the limited resources in current IoT infrastructures and the stringent quality-of-service requirements of the applications, providing computing and communication supports for the applications is becoming increasingly difficult. In this paper, we consider IoT applications that receive continuous data streams from multiple sources in the network, and study joint application placement and data routing to support all data streams with both bandwidth and delay guarantees. We formulate the application provisioning problem both for a single application and for multiple applications, with both cases proved to be NP-hard. For the case with a single application, we propose a fully polynomial-time approximation scheme. For the multi-application scenario, if the applications can be parallelized among multiple distributed instances, we propose a fully polynomial-time approximation scheme; for general non-parallelizable applications, we propose a randomized algorithm and analyze its performance. Simulations show that the proposed algorithms greatly improve the quality-of-service of the IoT applications compared to the heuristics. 
    more » « less
  5. Network disaster recovery is one of the greatest concerns for Mobile Network Operators (MNOs) and first responders during large-scale natural disasters such as earth- quakes. In many recent studies, wireless multi-hop networking has been demonstrated as an effective technique to quickly and efficiently extend the network coverage during disasters. In this paper, we specifically address the network deployment problem by proposing the Population-Aware Relay Placement (PARP) solution, which seeks the efficient deployment of a limited number of relays such that population coverage is maximized in the scenario of network disaster recovery. We provide a graph-based modeling and prove its NP-hardness accordingly. In order to efficiently solve this problem, we propose a heuristic solution, which is constructed in two steps. We first design a simple algorithm based on a disk graph to determine the Steiner locations, which is the biggest challenge in this problem. Then, we formulate the problem as an integer programming problem, which is inspired by the formulation of Prize-Collecting Steiner Tree (PCST). Thus, the integer problem is solved by exploring the similarity of the existing algorithm for PCST. To evaluate the proposed solution extensively, we present numerical results on both real-world and random scenarios, which validate the effectiveness of the proposed solution and show substantial improvement by comparing to the previous one. 
    more » « less
  6. Natural disasters can result in severe damage to communication infrastructure, which leads to further chaos to the damaged area. After the disaster strikes, most of the victims would gather at the evacuation sites for food supplies and other necessities. Having a good communication network is very important to help the victims. In this paper, we aim at recovering the network from the still-alive mobile base stations to the out-of-service evacuation sites by using multi-hop relaying technique. We propose to reconstruct the post-disaster network in a capacity-aware way based on prize collecting Steiner tree. The purpose of the proposed scheme is to achieve high capacity connectivity ratio in a cost efficient way. To provide more accurate evaluation results, we evaluate the proposed scheme by using the real evacuation site and base station data in Tokyo area, and utilizing the big data analysis based post-disaster service availability model. 
    more » « less