Diffusive vertical heat flux in the Canada Basin of the Arctic Ocean inferred from moored instruments: VERTICAL HEAT FLUX IN THE CANADA BASIN
More Like this
-
Abstract The Canada Basin has exhibited a significant trend toward a fresher surface layer and thus a more stratified upper‐ocean over the past three decades. State‐of‐the‐art ice‐ocean models, by contrast, tend to simulate a surface layer that is saltier and less stratified than observed. Here, we examine decadal changes to seasonal processes that may contribute to this wide‐reaching model bias using climate model simulations from the Community Earth System Model and below‐ice observations from the Arctic Ice Dynamics Joint Experiment in 1975 and Ice Tethered Profilers in 2006–2012. In contrast to the observations, the models simulate salinity profiles that show relatively little variation between 1975 and 2012. We demonstrate that this bias can be mainly attributed to unrealistically deep vertical mixing in the model, creating a surface layer that is saltier than observed. The results provide insight for climate model improvement with broad implications for Arctic sea ice and ecosystem dynamics.more » « less
-
Abstract We compare the vertical hydrography of the Community Earth System Model Large Ensemble (CESM1‐LE) with observations from two specific periods: the Arctic Ice Dynamics Joint Experiment (AIDJEX; 1975–1976) and Ice‐Tethered Profilers (ITP; 2004–2018). A comparison between simulated and observed salinity and potential temperature profiles highlights two key model biases in all ensemble members: (a) an absence of Pacific Waters in the water column and (b) a slight deepening of the May mixed layer contrary to observations, which show a large reduction in the mixed‐layer depth and an increase in stratification over the same time period. We examine processes controlling the sea ice mass balance using a one‐dimensional vertical heat budget in the light of the model limitations implied by these two biases. Results indicate that remnant solar heat trapped beneath the halocline is mostly ventilated to the surface by mixing before the following melt season. Furthermore, we find that vertical advection associated with Ekman pumping has only a small effect on the vertical heat transport, even in early fall when the winds are strong and the pack ice is weak. Lastly, we estimate the impact of the missing Pacific Waters at 0.40 m of reduced winter ice growth.more » « less
-
Abstract Simulations of the Argentine Basin have large uncertainties associated with quantities such as air‐sea exchanges of heat and carbon in current generation climate models and ocean reanalysis products. This is due to the complex topography, profound undersampling until recent years, and strong currents and mixing of subpolar and subtropical water masses in the basin. Because mixing of water masses is important here, model resolution is hypothesized to play an important role in estimating ocean quantities and determining overall budgets. We construct three regional ocean models with biogeochemistry at 1/3°, 1/6°, and 1/12° resolutions for the year 2017 to investigate heat and carbon dynamics in the region and determine the effect of model resolution on these dynamics. Initial conditions and boundary forcing from BSOSE (the Biogeochemical Southern Ocean State Estimate (Verdy & Mazloff, 2017),https://doi.org/10.1002/2016JC012650) and atmospheric forcing from ERA5 are used. The models are evaluated for accuracy by comparing output to Argo and BGC‐Argo float profiles, BSOSE, and other reanalyses and mapped products. We then quantify the effect of resolution on model upper ocean heat and carbon transport and the associated air‐sea exchanges. We determine that increasing the resolution from 1/3° to 1/12° enhances the upward vertical transport and surface exchanges of heat but causes no significant effect on surface carbon fluxes despite enhancing downward transport of anomalous DIC.more » « less
An official website of the United States government

