skip to main content


Title: Diffusive vertical heat flux in the Canada Basin of the Arctic Ocean inferred from moored instruments: VERTICAL HEAT FLUX IN THE CANADA BASIN
Award ID(s):
1604085 1302884
NSF-PAR ID:
10096135
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
119
Issue:
1
ISSN:
2169-9275
Page Range / eLocation ID:
496 to 508
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We compare the vertical hydrography of the Community Earth System Model Large Ensemble (CESM1‐LE) with observations from two specific periods: the Arctic Ice Dynamics Joint Experiment (AIDJEX; 1975–1976) and Ice‐Tethered Profilers (ITP; 2004–2018). A comparison between simulated and observed salinity and potential temperature profiles highlights two key model biases in all ensemble members: (a) an absence of Pacific Waters in the water column and (b) a slight deepening of the May mixed layer contrary to observations, which show a large reduction in the mixed‐layer depth and an increase in stratification over the same time period. We examine processes controlling the sea ice mass balance using a one‐dimensional vertical heat budget in the light of the model limitations implied by these two biases. Results indicate that remnant solar heat trapped beneath the halocline is mostly ventilated to the surface by mixing before the following melt season. Furthermore, we find that vertical advection associated with Ekman pumping has only a small effect on the vertical heat transport, even in early fall when the winds are strong and the pack ice is weak. Lastly, we estimate the impact of the missing Pacific Waters at 0.40 m of reduced winter ice growth.

     
    more » « less
  2. Abstract

    The Canada Basin has exhibited a significant trend toward a fresher surface layer and thus a more stratified upper‐ocean over the past three decades. State‐of‐the‐art ice‐ocean models, by contrast, tend to simulate a surface layer that is saltier and less stratified than observed. Here, we examine decadal changes to seasonal processes that may contribute to this wide‐reaching model bias using climate model simulations from the Community Earth System Model and below‐ice observations from the Arctic Ice Dynamics Joint Experiment in 1975 and Ice Tethered Profilers in 2006–2012. In contrast to the observations, the models simulate salinity profiles that show relatively little variation between 1975 and 2012. We demonstrate that this bias can be mainly attributed to unrealistically deep vertical mixing in the model, creating a surface layer that is saltier than observed. The results provide insight for climate model improvement with broad implications for Arctic sea ice and ecosystem dynamics.

     
    more » « less