skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lights Out: Climate Change Risk to Internet Infrastructure
In this paper we consider the risks to Internet infrastructure in the US due to sea level rise. Our study is based on sea level incursion projections from the National Oceanic and Atmospheric Administration (NOAA) [12] and Internet infrastructure deployment data from Internet Atlas [24]. We align the data formats and assess risks in terms of the amount and type of infrastructure that will be under water in different time intervals over the next 100 years. We find that 4,067 miles of fiber conduit will be under water and 1,101 nodes (e.g., points of presence and colocation centers) will be surrounded by water in the next 15 years. We further quantify the risks of sea level rise by defining a metric that considers the combination of geographic scope and Internet infrastructure density. We use this metric to examine different regions and find that the New York, Miami, and Seattle metropolitan areas are at highest risk. We also quantify the risks to individual service provider infrastructures and find that CenturyLink, Inteliquent, and AT&T are at highest risk. While it is difficult to project the impact of countermeasures such as sea walls, our results suggest the urgency of developing mitigation strategies and alternative infrastructure deployments.  more » « less
Award ID(s):
1703592
PAR ID:
10096148
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM/IRTF/ISOC Applied Networking Research Workshop
Page Range / eLocation ID:
9 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Design of coastal defense structures like seawalls and breakwaters can no longer be based on stationarity assumption. In many parts of the world, an anticipated sea‐level rise (SLR) due to climate change will constitute present‐day extreme sea levels inappropriate for future coastal flood risk assessments since it will significantly increase their probability of occurrence. Here, we first show that global annual maxima sea levels (AMSLs) have been increasing in magnitude over the last decades, primarily due to a positive shift in mean sea level (MSL). Then, we apply non‐stationary extreme value theory to model the extremal behavior of sea levels with MSL as a covariate and quantify the evolution of AMSLs in the following decades using revised probabilistic sea‐level rise projections. Our analysis reveals that non‐stationary distributions exhibit distinct differences compared to simply considering stationary conditions with a change in location parameter equal to the amount of MSL rise. With the use of non‐stationary distributions, we show that by the year 2050 many locations will experience their present‐day 100‐yr return level as an event with return period less than 15 and 9 years under the moderate (RCP4.5) and high (RCP8.5) representative concentration pathways. Also, we find that by the end of this century almost all locations examined will encounter their current 100‐yr return level on an annual basis, even if CO2concentration is kept at moderate levels (RCP4.5). Our assessment accounts for large uncertainty by incorporating ambiguities in both SLR projections and non‐stationary extreme value distribution parameters via a Monte Carlo simulation. 
    more » « less
  2. Abstract The risk of compound coastal flooding in the San Francisco Bay Area is increasing due to climate change yet remains relatively underexplored. Using a novel hybrid statistical-dynamical downscaling approach, this study investigates the impacts of climate change induced sea-level rise and higher river discharge on the magnitude and frequency of flooding events as well as the relative importance of various forcing drivers to compound flooding within the Bay. Results reveal that rare occurrences of flooding under the present-day climate are projected to occur once every few hundred years under climate change with relatively low sea-level rise (0.5 m) but would become annual events under climate change with high sea-level rise (1.0 to 1.5 m). Results also show that extreme water levels that are presently dominated by tides will be dominated by sea-level rise in most locations of the Bay in the future. The dominance of river discharge to the non-tidal and non-sea-level rise driven water level signal in the North Bay is expected to extend ~15 km further seaward under extreme climate change. These findings are critical for informing climate adaptation and coastal resilience planning in San Francisco Bay. 
    more » « less
  3. Arctic shorelines are vulnerable to climate change impacts as sea level rises, permafrost thaws, storms intensify, and sea ice thins. Seventy-five years of aerial and satellite observations have established coastal erosion as an increasing Arctic hazard. However, other hazards at play—for instance, the cumulative impact that sea-level rise and permafrost thaw subsidence will have on permafrost shorelines—have received less attention, preventing assessments of these processes’ impacts compared to and combined with coastal erosion. Alaska’s Arctic Coastal Plain (ACP) is ideal for such assessments because of the high-density observations of topography, coastal retreat rates, and permafrost characteristics, and importance to Indigenous communities and oilfield infrastructure. Here, we produce 21st-century projections of Arctic shoreline position that include erosion, permafrost subsidence, and sea-level rise. Focusing on the ACP, we merge 5 m topography, satellite-derived coastal lake depth estimates, and empirical assessments of land subsidence due to permafrost thaw with projections of coastal erosion and sea-level rise for medium and high emissions scenarios from the Intergovernmental Panel on Climate Change’s AR6 Report. We find that by 2100, erosion and inundation will together transform the ACP, leading to 6-8x more land loss than coastal erosion alone and disturbing 8-11x more organic carbon. Without mitigating measures, by 2100, coastal change could damage 40 to 65% of infrastructure in present-day ACP coastal villages and 10 to 20% of oilfield infrastructure. Our findings highlight the risks that compounding climate hazards pose to coastal communities and underscore the need for adaptive planning for Arctic coastlines in the 21st century. 
    more » « less
  4. Climate-driven sea-level rise is increasing the frequency of coastal flooding worldwide, exacerbated locally by factors like land subsidence from groundwater and resource extraction. However, a process rarely considered in future sea-level rise scenarios is sudden (over minutes) land subsidence associated with great (>M8) earthquakes, which can exceed 1 m. Along the Washington, Oregon, and northern California coasts, the next great Cascadia subduction zone earthquake could cause up to 2 m of sudden coastal subsidence, dramatically raising sea level, expanding floodplains, and increasing the flood risk to local communities. Here, we quantify the potential expansion of the 1 % floodplain (i.e., the area with an annual flood risk of 1%) under low (~0.5 m), medium (~1 m), and high (~2 m) earthquake-driven subsidence scenarios at 24 Cascadia estuaries. If a great earthquake occurred today, floodplains could expand by 90 km² (low), 160 km² (medium), or 300 km² (high subsidence), more than doubling the flooding exposure of residents, structures, and roads under the high subsidence scenario. By 2100, when climate-driven sea-level rise will compound the hazard, a great earthquake could expand floodplains by 170 km² (low), 240 km² (medium), or 370 km² (high subsidence), more than tripling the flooding exposure of residents, structures, and roads under the high subsidence scenario compared to the 2023 floodplain. Our findings can support decision makers and coastal communities along the Cascadia subduction zone as they prepare for compound hazards from earthquake-cycle and climate-driven sea-level rise, and provide critical insights for tectonically active coastlines globally. 
    more » « less
  5. Climate-driven sea-level rise is increasing the frequency of coastal flooding worldwide, exacerbated locally by factors like land subsidence from groundwater and resource extraction. However, a process rarely considered in future sea-level rise scenarios is sudden (over minutes) land subsidence associated with great (>M8) earthquakes, which can exceed 1 m. Along the Washington, Oregon, and northern California coasts, the next great Cascadia subduction zone earthquake could cause up to 2 m of sudden coastal subsidence, dramatically raising sea level, expanding floodplains, and increasing the flood risk to local communities. Here, we quantify the potential expansion of the 1% floodplain (i.e., the area with an annual flood risk of 1%) under low (~0.5 m), medium (~1 m), and high (~2 m) earthquake-driven subsidence scenarios at 24 Cascadia estuaries. If a great earthquake occurred today, floodplains could expand by 90 km2(low), 160 km2(medium), or 300 km2(high subsidence), more than doubling the flooding exposure of residents, structures, and roads under the high subsidence scenario. By 2100, when climate-driven sea-level rise will compound the hazard, a great earthquake could expand floodplains by 170 km2(low), 240 km2(medium), or 370 km2(high subsidence), more than tripling the flooding exposure of residents, structures, and roads under the high subsidence scenario compared to the 2023 floodplain. Our findings can support decision-makers and coastal communities along the Cascadia subduction zone as they prepare for compound hazards from the earthquake cycle and climate-driven sea-level rise and provide critical insights for tectonically active coastlines globally. 
    more » « less