skip to main content


Title: Automating Privacy Compliance Using Policy Integrated Blockchain
An essential requirement of any information management system is to protect data and resources against breach or improper modifications, while at the same time ensuring data access to legitimate users. Systems handling personal data are mandated to track its flow to comply with data protection regulations. We have built a novel framework that integrates semantically rich data privacy knowledge graph with Hyperledger Fabric blockchain technology, to develop an automated access-control and audit mechanism that enforces users' data privacy policies while sharing their data with third parties. Our blockchain based data-sharing solution addresses two of the most critical challenges: transaction verification and permissioned data obfuscation. Our solution ensures accountability for data sharing in the cloud by incorporating a secure and efficient system for End-to-End provenance. In this paper, we describe this framework along with the comprehensive semantically rich knowledge graph that we have developed to capture rules embedded in data privacy policy documents. Our framework can be used by organizations to automate compliance of their Cloud datasets.  more » « less
Award ID(s):
1747724
NSF-PAR ID:
10096186
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Cryptography
Volume:
3
Issue:
1
ISSN:
2410-387X
Page Range / eLocation ID:
7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The healthcare sector is constantly improving patient health record systems. However, these systems face a significant challenge when confronted with patient health record (PHR) data due to its sensitivity. In addition, patient’s data is stored and spread generally across various healthcare facilities and among providers. This arrangement of distributed data becomes problematic whenever patients want to access their health records and then share them with their care provider, which yields a lack of interoperability among various healthcare systems. Moreover, most patient health record systems adopt a centralized management structure and deploy PHRs to the cloud, which raises privacy concerns when sharing patient information over a network. Therefore, it is vital to design a framework that considers patient privacy and data security when sharing sensitive information with healthcare facilities and providers. This paper proposes a blockchain framework for secured patient health records sharing that allows patients to have full access and control over their health records. With this novel approach, our framework applies the Ethereum blockchain smart contracts, the Inter-Planetary File System (IPFS) as an off-chain storage system, and the NuCypher protocol, which functions as key management and blockchain-based proxy re-encryption to create a secured on-demand patient health records sharing system effectively. Results show that the proposed framework is more secure than other schemes, and the PHRs will not be accessible to unauthorized providers or users. In addition, all encrypted data will only be accessible to and readable by verified entities set by the patient. 
    more » « less
  2. The rapid development of three-dimensional (3D) acquisition technology based on 3D sensors provides a large volume of data, which are often represented in the form of point clouds. Point cloud representation can preserve the original geometric information along with associated attributes in a 3D space. Therefore, it has been widely adopted in many scene-understanding-related applications such as virtual reality (VR) and autonomous driving. However, the massive amount of point cloud data aggregated from distributed 3D sensors also poses challenges for secure data collection, management, storage, and sharing. Thanks to the characteristics of decentralization and security, Blockchain has great potential to improve point cloud services and enhance security and privacy preservation. Inspired by the rationales behind the software-defined network (SDN) technology, this paper envisions SAUSA, a Blockchain-based authentication network that is capable of recording, tracking, and auditing the access, usage, and storage of 3D point cloud datasets in their life-cycle in a decentralized manner. SAUSA adopts an SDN-inspired point cloud service architecture, which allows for efficient data processing and delivery to satisfy diverse quality-of-service (QoS) requirements. A Blockchain-based authentication framework is proposed to ensure security and privacy preservation in point cloud data acquisition, storage, and analytics. Leveraging smart contracts for digitizing access control policies and point cloud data on the Blockchain, data owners have full control of their 3D sensors and point clouds. In addition, anyone can verify the authenticity and integrity of point clouds in use without relying on a third party. Moreover, SAUSA integrates a decentralized storage platform to store encrypted point clouds while recording references of raw data on the distributed ledger. Such a hybrid on-chain and off-chain storage strategy not only improves robustness and availability, but also ensures privacy preservation for sensitive information in point cloud applications. A proof-of-concept prototype is implemented and tested on a physical network. The experimental evaluation validates the feasibility and effectiveness of the proposed SAUSA solution. 
    more » « less
  3. As part of its ongoing efforts to meet the increased spectrum demand, the Federal Communications Commission (FCC) has recently opened up 150 MHz in the 3.5 GHz band for shared wireless broadband use. Access and operations in this band, aka Citizens Broadband Radio Service (CBRS), will be managed by a dynamic spectrum access system (SAS) to enable seamless spectrum sharing between secondary users (SU s) and incumbent users. Despite its benefits, SAS’s design requirements, as set by FCC, present privacy risks to SU s, merely because SU s are required to share sensitive operational information (e.g., location, identity, spectrum usage) with SAS to be able to learn about spectrum availability in their vicinity. In this paper, we propose TrustSAS, a trustworthy framework for SAS that synergizes state-of-the-art cryptographic techniques with blockchain technology in an innovative way to address these privacy issues while complying with FCC’s regulatory design requirements. We analyze the security of our framework and evaluate its performance through analysis, simulation and experimentation. We show that TrustSAS can offer high security guarantees with reasonable overhead, making it an ideal solution for addressing SU s’ privacy issues in an operational SAS environment. 
    more » « less
  4. Patient health records(PHRs) are crucial and sensitive as they contain essential information and are frequently shared among healthcare entities. This information must remain correct, up to date, private and accessible only to the authorized entities. Moreover, access must also be assured during health emergency crises such as the recent outbreak, which represents the greatest test of the flexibility and the efficiency of PHR sharing among healthcare providers, which ended up an immense interruption to the healthcare industry. Moreover, the right to privacy is the most fundamental right for a patient. Hence, the patient health records in the healthcare sector have faced issues with privacy breaches, insider outside attacks, and unauthorized access to crucial patients’ records. As a result, it pushes more patients to demand more control, security, and a smoother experience when they want to access their health records. Furthermore, the lack of interoperability among the healthcare system and providers and the added weight of cyber-attacks on an already overwhelmed system have called for an immediate solution. In this work, we developed a secured blockchain framework that safeguards patients’ full control over their health data which can be stored in their private IPFS and later shared with an authorized provider. Furthermore, the system ensures privacy and security while handling patient data, which can only be shared with the patients. The proposed Security and privacy analysis show promising results in providing time savings, enhanced confidentiality, and less disruption in patient-provider interactions. 
    more » « less
  5. Abstract Millions of consumers depend on smart camera systems to remotely monitor their homes and businesses. However, the architecture and design of popular commercial systems require users to relinquish control of their data to untrusted third parties, such as service providers (e.g., the cloud). Third parties therefore can (and in some instances have) access the video footage without the users’ knowledge or consent—violating the core tenet of user privacy. In this paper, we present CaCTUs , a privacy-preserving smart Camera system Controlled Totally by Users. CaCTUs returns control to the user ; the root of trust begins with the user and is maintained through a series of cryptographic protocols, designed to support popular features, such as sharing, deleting, and viewing videos live. We show that the system can support live streaming with a latency of 2 s at a frame rate of 10 fps and a resolution of 480 p. In so doing, we demonstrate that it is feasible to implement a performant smart-camera system that leverages the convenience of a cloud-based model while retaining the ability to control access to (private) data. 
    more » « less