skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1747724

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Cloud Legal documents, like Privacy Policies and Terms of Services (ToS), include key terms and rules that enable consumers to continuously monitor the performance of the cloud services used in their organization. To ensure high consumer confidence in the cloud service, it is necessary that these documents are clear and comprehensible to the average consumer. However, in practice, service providers often use legalese and ambiguous language in cloud legal documents resulting in consumers consenting or rejecting the terms without understanding the details. A measure capturing ambiguity in the texts of cloud service documents will enable consumers to decide if they understand what they are agreeing to, and deciding whether that service will meet their organizational requirements. It will also allow them to compare the service policies across various vendors. We have developed a novel model, ViCLOUD, that defines a scoring method based on linguistic cues to measure ambiguity in cloud legal documents and compare them to other peer websites. In this paper, we describe the ViCLOUD model in detail along with the validation results when applying it to 112 privacy policies and 108 Terms of Service documents of 115 cloud service vendors. The score distribution gives us a landscape of current trends in cloud services and a scale of comparison for new documentation. Our model will be very useful to organizations in making judicious decisions when selecting their cloud service. 
    more » « less
  2. null (Ed.)
  3. With the rapid adoption of web services, the need to protect against various threats has become imperative for organizations operating in cyberspace. Organizations are increasingly opting to get financial cover in the event of losses due to a security incident. This helps them safeguard against the threat posed to third-party services that the organization uses. It is in the organization’s interest to understand the insurance requirements and procure all necessary direct and liability coverages. This helps transfer some risks to the insurance providers. However, cyber insurance policies often list details about coverages and exclusions using legalese that can be difficult to comprehend. Currently, it takes a significant manual effort to parse and extract knowledgeable rules from these lengthy and complicated policy documents. We have developed a semantically rich machine processable framework to automatically analyze cyber insurance policy and populate a knowledge graph that efficiently captures various inclusion and exclusion terms and rules embedded in the policy. In this paper, we describe this framework that has been built using technologies from AI, including Semantic Web, Modal/ Deontic Logic, and Natural Language Processing. We have validated our approach using industry standards proposed by the United States Federal Trade Commission (FTC) and applying it against publicly available policies of 7 cyber insurance vendors. Our system will enable cyber insurance seekers to automatically analyze various policy documents and make a well informed decision by identifying its inclusions and exclusions. 
    more » « less
  4. An essential requirement of any information management system is to protect data and resources against breach or improper modifications, while at the same time ensuring data access to legitimate users. Systems handling personal data are mandated to track its flow to comply with data protection regulations. We have built a novel framework that integrates semantically rich data privacy knowledge graph with Hyperledger Fabric blockchain technology, to develop an automated access-control and audit mechanism that enforces users' data privacy policies while sharing their data with third parties. Our blockchain based data-sharing solution addresses two of the most critical challenges: transaction verification and permissioned data obfuscation. Our solution ensures accountability for data sharing in the cloud by incorporating a secure and efficient system for End-to-End provenance. In this paper, we describe this framework along with the comprehensive semantically rich knowledge graph that we have developed to capture rules embedded in data privacy policy documents. Our framework can be used by organizations to automate compliance of their Cloud datasets. 
    more » « less