- Award ID(s):
- 1813537
- NSF-PAR ID:
- 10096516
- Date Published:
- Journal Name:
- USENIX Conference on Operational Machine Learning
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Building accurate and efficient deep neural network (DNN) models for intelligent sensing systems to process data locally is essential. Spiking neural networks (SNNs) have gained significant popularity in recent years because they are more biological-plausible and energy-efficient than DNNs. However, SNNs usually have lower accuracy than DNNs. In this paper, we propose to use SNNs for image sensing applications. Moreover, we introduce the DNN-SNN knowledge distillation algorithm to reduce the accuracy gap between DNNs and SNNs. Our DNNSNN knowledge distillation improves the accuracy of an SNN by transferring knowledge between a DNN and an SNN. To better transfer the knowledge, our algorithm creates two learning paths from a DNN to an SNN. One path is between the output layer and another path is between the intermediate layer. DNNs use real numbers to propagate information between neurons while SNNs use 1-bit spikes. To empower the communication between DNNs and SNNs, we utilize a decoder to decode spikes into real numbers. Also, our algorithm creates a learning path from an SNN to a DNN. This learning path better adapts the DNN to the SNN by allowing the DNN to learn the knowledge from the SNN. Our SNN models are deployed on Loihi, which is a specialized chip for SNN models. On the MNIST dataset, our SNN models trained by the DNN-SNN knowledge distillation achieve better accuracy than the SNN models on GPU trained by other training algorithms with much lower energy consumption per image.more » « less
-
null (Ed.)Abstract Behavior involves the ongoing interaction between an organism and its environment. One of the prevailing theories of adaptive behavior is that organisms are constantly making predictions about their future environmental stimuli. However, how they acquire that predictive information is still poorly understood. Two complementary mechanisms have been proposed: predictions are generated from an agent’s internal model of the world or predictions are extracted directly from the environmental stimulus. In this work, we demonstrate that predictive information, measured using bivariate mutual information, cannot distinguish between these two kinds of systems. Furthermore, we show that predictive information cannot distinguish between organisms that are adapted to their environments and random dynamical systems exposed to the same environment. To understand the role of predictive information in adaptive behavior, we need to be able to identify where it is generated. To do this, we decompose information transfer across the different components of the organism-environment system and track the flow of information in the system over time. To validate the proposed framework, we examined it on a set of computational models of idealized agent-environment systems. Analysis of the systems revealed three key insights. First, predictive information, when sourced from the environment, can be reflected in any agent irrespective of its ability to perform a task. Second, predictive information, when sourced from the nervous system, requires special dynamics acquired during the process of adapting to the environment. Third, the magnitude of predictive information in a system can be different for the same task if the environmental structure changes.more » « less
-
A key promise of adaptive collaborative learning support is the ability to improve learning outcomes by providing individual students with the help they need to collaborate more effectively. These systems have focused on a single platform. However, recent technology-supported collaborative learning platforms allow students to collaborate in different contexts: computer-supported classroom environments, network based online learning environments, or virtual learning environments with pedagogical agents. Our goal is to better understand how students participate in collaborative behaviors across platforms, focusing on a specific type of collaboration - help-giving. We conducted a classroom study (N = 20) to understand how students engage in help-giving across two platforms: an interactive digital learning environment and an online Q&A community. The results indicate that help-giving behavior across the two platforms is mostly influenced by the context rather than by individual differences. We discuss the implications of the results and suggest design recommendations for developing an adaptive collaborative learning support system that promotes learning and transfer.more » « less
-
Deep learning is being incorporated in many modern software systems. Deep learning approaches train a deep neural network (DNN) model using training examples, and then use the DNN model for prediction. While the structure of a DNN model as layers is observable, the model is treated in its entirety as a monolithic component. To change the logic implemented by the model, e.g. to add/remove logic that recognizes inputs belonging to a certain class, or to replace the logic with an alternative, the training examples need to be changed and the DNN needs to be retrained using the new set of examples. We argue that decomposing a DNN into DNN modules-akin to decomposing a monolithic software code into modules-can bring the benefits of modularity to deep learning. In this work, we develop a methodology for decomposing DNNs for multi-class problems into DNN modules. For four canonical problems, namely MNIST, EMNIST, FMNIST, and KMNIST, we demonstrate that such decomposition enables reuse of DNN modules to create different DNNs, enables replacement of one DNN module in a DNN with another without needing to retrain. The DNN models formed by composing DNN modules are at least as good as traditional monolithic DNNs in terms of test accuracy for our problems.more » « less
-
Abstract The real world is uncertain, and while ever changing, it constantly presents itself in terms of new sets of behavioral options. To attain the flexibility required to tackle these challenges successfully, most mammalian brains are equipped with certain computational abilities that rely on the prefrontal cortex (PFC). By examining learning in terms of internal models associating stimuli, actions, and outcomes, we argue here that adaptive behavior relies on specific interactions between multiple systems including: (1) selective models learning stimulus–action associations through rewards; (2) predictive models learning stimulus- and/or action–outcome associations through statistical inferences anticipating behavioral outcomes; and (3) contextual models learning external cues associated with latent states of the environment. Critically, the PFC combines these internal models by forming task sets to drive behavior and, moreover, constantly evaluates the reliability of actor task sets in predicting external contingencies to switch between task sets or create new ones. We review different models of adaptive behavior to demonstrate how their components map onto this unifying framework and specific PFC regions. Finally, we discuss how our framework may help to better understand the neural computations and the cognitive architecture of PFC regions guiding adaptive behavior.