skip to main content

Title: Sources of predictive information in dynamical neural networks
Abstract Behavior involves the ongoing interaction between an organism and its environment. One of the prevailing theories of adaptive behavior is that organisms are constantly making predictions about their future environmental stimuli. However, how they acquire that predictive information is still poorly understood. Two complementary mechanisms have been proposed: predictions are generated from an agent’s internal model of the world or predictions are extracted directly from the environmental stimulus. In this work, we demonstrate that predictive information, measured using bivariate mutual information, cannot distinguish between these two kinds of systems. Furthermore, we show that predictive information cannot distinguish between organisms that are adapted to their environments and random dynamical systems exposed to the same environment. To understand the role of predictive information in adaptive behavior, we need to be able to identify where it is generated. To do this, we decompose information transfer across the different components of the organism-environment system and track the flow of information in the system over time. To validate the proposed framework, we examined it on a set of computational models of idealized agent-environment systems. Analysis of the systems revealed three key insights. First, predictive information, when sourced from the environment, can be reflected in more » any agent irrespective of its ability to perform a task. Second, predictive information, when sourced from the nervous system, requires special dynamics acquired during the process of adapting to the environment. Third, the magnitude of predictive information in a system can be different for the same task if the environmental structure changes. « less
Award ID(s):
1845322 1735095
Publication Date:
Journal Name:
Scientific Reports
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    An organism’s ability to control the timing and direction of energy flow both within its body and out to the surrounding environment is vital to maintaining proper function. When physically interacting with an external target, the mechanical energy applied by the organism can be transferred to the target as several types of output energy, such as target deformation, target fracture, or as a transfer of momentum. The particular function being performed will dictate which of these results is most adaptive to the organism. Chewing food favors fracture, whereas running favors the transfer of momentum from the appendages to the ground. Here, we explore the relationship between deformation, fracture, and momentum transfer in biological puncture systems. Puncture is a widespread behavior in biology requiring energy transfer into a target to allow fracture and subsequent insertion of the tool. Existing correlations between both tool shape and tool dynamics with puncture success do not account for what energy may be lost due to deformation and momentum transfer in biological systems. Using a combination of pendulum tests and particle tracking velocimetry (PTV), we explored the contributions of fracture, deformation and momentum to puncture events using a gaboon viper fang. Results on unrestrained targetsmore »illustrate that momentum transfer between tool and target, controlled by the relative masses of the two, can influence the extent of fracture achieved during high-speed puncture. PTV allowed us to quantify deformation throughout the target during puncture and tease apart how input energy is partitioned between deformation and fracture. The relationship between input energy, target deformation and target fracture is non-linear; increasing impact speed from 2.0 to 2.5 m/s created no further fracture, but did increase deformation while increasing speed to 3.0 m/s allowed an equivalent amount of fracture to be achieved for less overall deformation. These results point to a new framework for examining puncture systems, where the relative resistances to deformation, fracture and target movement dictate where energy flows during impact. Further developing these methods will allow researchers to quantify the energetics of puncture systems in a way that is comparable across a broad range of organisms and connect energy flow within an organism to how that energy is eventually transferred to the environment.

    « less
  2. Animals generate many different motor programs (such as moving, feeding and grooming) that they can alter in response to internal needs and environmental cues. These motor programs are controlled by dedicated brain circuits that act on specific muscle groups. However, little is known about how organisms coordinate these different motor programs to ensure that their resulting behavior is coherent and appropriate to the situation. This is difficult to investigate in large organisms with complex nervous systems, but with 302 brain cells that control 143 muscle cells, the small worm Caenorhabditis elegans provides a good system to examine this question. Here, Cermak, Yu, Clark et al. devised imaging methods to record each type of motor program in C. elegans worms over long time periods, while also dissecting the underlying neural mechanisms that coordinate these motor programs. This constitutes one of the first efforts to capture and quantify all the behavioral outputs of an entire organism at once. The experiments also showed that dopamine – a messenger molecule in the brain – links the neural circuits that control two motor programs: movement and egg-laying. A specific type of high-speed movement activates brain cells that release dopamine, which then transmits this information tomore »the egg-laying circuit. This means that worms lay most of their eggs whilst traveling at high speed through a food source, so that their progeny can be distributed across a nutritive environment. This work opens up the possibility to study how behaviors are coordinated at the level of the whole organism – a departure from the traditional way of focusing on how specific neural circuits generate specific behaviors. Ultimately, it will also be interesting to look at the role of dopamine in behavior coordination in a wide range of animals.« less
  3. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  4. An important problem in designing human-robot systems is the integration of human intent and performance in the robotic control loop, especially in complex tasks. Bimanual coordination is a complex human behavior that is critical in many fine motor tasks, including robot-assisted surgery. To fully leverage the capabilities of the robot as an intelligent and assistive agent, online recognition of bimanual coordination could be important. Robotic assistance for a suturing task, for example, will be fundamentally different during phases when the suture is wrapped around the instrument (i.e., making a c- loop), than when the ends of the suture are pulled apart. In this study, we develop an online recognition method of bimanual coordination modes (i.e., the directions and symmetries of right and left hand movements) using geometric descriptors of hand motion. We (1) develop this framework based on ideal trajectories obtained during virtual 2D bimanual path following tasks performed by human subjects operating Geomagic Touch haptic devices, (2) test the offline recognition accuracy of bi- manual direction and symmetry from human subject movement trials, and (3) evalaute how the framework can be used to characterize 3D trajectories of the da Vinci Surgical System’s surgeon-side manipulators during bimanual surgical training tasks.more »In the human subject trials, our geometric bimanual movement classification accuracy was 92.3% for movement direction (i.e., hands moving together, parallel, or away) and 86.0% for symmetry (e.g., mirror or point symmetry). We also show that this approach can be used for online classification of different bimanual coordination modes during needle transfer, making a C loop, and suture pulling gestures on the da Vinci system, with results matching the expected modes. Finally, we discuss how these online estimates are sensitive to task environment factors and surgeon expertise, and thus inspire future work that could leverage adaptive control strategies to enhance user skill during robot-assisted surgery.« less
  5. Connected vehicle (CV) systems are cognizant of potential cyber attacks because of increasing connectivity between its different components such as vehicles, roadside infrastructure and traffic management centers. However, it is a challenge to detect security threats in real-time and develop appropriate/effective countermeasures for a CV system because of the dynamic behavior of such attacks, high computational power requirement and a historical data requirement for training detection models. To address these challenges, statistical models, especially change point models, have potentials for real-time anomaly detections. Thus, the objective of this study is to investigate the efficacy of two change point models, Expectation Maximization (EM) and two forms of Cumulative Summation (CUSUM) algorithms (i.e., typical and adaptive), for real-time V2I cyber attack detection in a CV Environment. To prove the efficacy of these models, we evaluated these two models for three different type of cyber attack, denial of service (DOS), impersonation, and false information, using basic safety messages (BSMs) generated from CVs through simulation. Results from numerical analysis revealed that EM, CUSUM, and adaptive CUSUM could detect these cyber attacks, DOS, impersonation, and false information, with an accuracy of (99\%, 100\%, 100\%), (98\%, 100\%, 100\%), and (100\%, 98\%, 100\%) respectively.