In this paper, a density-driven multi-agent swarm control problem is investigated. Robot swarms can provide a great benefit, especially for applications where a single robot cannot effectively achieve a given task. For large spatial-scale applications such as search and rescue, environmental monitoring, and surveillance, a new multi-agent swarm control strategy is necessary because of physical constraints including a robot number and operation time. This paper provides a novel density-driven swarm control strategy for multi-agent systems based on the Optimal Transport theory, to cover a spacious domain with limited resources. In such a scenario, \textit{efficiency} will likely be a key point in achieving an efficient robot swarm behavior rather than uniform coverage that might be infeasible. With the given reference density, pre-constructed from available information, the proposed swarm control method will drive the multi-agent system such that their time-averaged behavior becomes similar to the reference density. In this way, density-driven swarm control will enable the multiple agents to spend most of their time on high-priority regions that are reflected in the reference density, leading to efficiency. To protect the agents from collisions, the Artificial Potential Field method is employed and combined with the proposed density-driven swarm control scheme. Simulations are conducted to validate density-driven swarm control as well as to test collision avoidance. Also, the swarm performance is analyzed by varying the agent number in the simulation. 
                        more » 
                        « less   
                    
                            
                            Sources of predictive information in dynamical neural networks
                        
                    
    
            Abstract Behavior involves the ongoing interaction between an organism and its environment. One of the prevailing theories of adaptive behavior is that organisms are constantly making predictions about their future environmental stimuli. However, how they acquire that predictive information is still poorly understood. Two complementary mechanisms have been proposed: predictions are generated from an agent’s internal model of the world or predictions are extracted directly from the environmental stimulus. In this work, we demonstrate that predictive information, measured using bivariate mutual information, cannot distinguish between these two kinds of systems. Furthermore, we show that predictive information cannot distinguish between organisms that are adapted to their environments and random dynamical systems exposed to the same environment. To understand the role of predictive information in adaptive behavior, we need to be able to identify where it is generated. To do this, we decompose information transfer across the different components of the organism-environment system and track the flow of information in the system over time. To validate the proposed framework, we examined it on a set of computational models of idealized agent-environment systems. Analysis of the systems revealed three key insights. First, predictive information, when sourced from the environment, can be reflected in any agent irrespective of its ability to perform a task. Second, predictive information, when sourced from the nervous system, requires special dynamics acquired during the process of adapting to the environment. Third, the magnitude of predictive information in a system can be different for the same task if the environmental structure changes. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10286540
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Organisms perceive their environment and respond. The origin of perception–response traits presents a puzzle. Perception provides no value without response. Response requires perception. Recent advances in machine learning may provide a solution. A randomly connected network creates a reservoir of perceptive information about the recent history of environmental states. In each time step, a relatively small number of inputs drives the dynamics of the relatively large network. Over time, the internal network states retain a memory of past inputs. To achieve a functional response to past states or to predict future states, a system must learn only how to match states of the reservoir to the target response. In the same way, a random biochemical or neural network of an organism can provide an initial perceptive basis. With a solution for one side of the two-step perception–response challenge, evolving an adaptive response may not be so difficult. Two broader themes emerge. First, organisms may often achieve precise traits from sloppy components. Second, evolutionary puzzles often follow the same outlines as the challenges of machine learning. In each case, the basic problem is how to learn, either by artificial computational methods or by natural selection.more » « less
- 
            Stephens, Greg J (Ed.)Behavioral phenotyping of model organisms has played an important role in unravelling the complexities of animal behavior. Techniques for classifying behavior often rely on easily identified changes in posture and motion. However, such approaches are likely to miss complex behaviors that cannot be readily distinguished by eye (e.g., behaviors produced by high dimensional dynamics). To explore this issue, we focus on the model organism Caenorhabditis elegans , where behaviors have been extensively recorded and classified. Using a dynamical systems lens, we identify high dimensional, nonlinear causal relationships between four basic shapes that describe worm motion (eigenmodes, also called “eigenworms”). We find relationships between all pairs of eigenmodes, but the timescales of the interactions vary between pairs and across individuals. Using these varying timescales, we create “interaction profiles” to represent an individual’s behavioral dynamics. As desired, these profiles are able to distinguish well-known behavioral states: i.e., the profiles for foraging individuals are distinct from those of individuals exhibiting an escape response. More importantly, we find that interaction profiles can distinguish high dimensional behaviors among divergent mutant strains that were previously classified as phenotypically similar. Specifically, we find it is able to detect phenotypic behavioral differences not previously identified in strains related to dysfunction of hermaphrodite-specific neurons.more » « less
- 
            Abstract Devising an approach to deterministically position organisms can impact various fields such as bioimaging, cybernetics, cryopreservation, and organism‐integrated devices. This requires continuously assessing the locations of randomly distributed organisms to collect and transfer them to target spaces without harm. Here, an aspiration‐assisted adaptive printing system is developed that tracks, harvests, and relocates living and moving organisms on target spaces via a pick‐and‐place mechanism that continuously adapts to updated visual and spatial information about the organisms and target spaces. These adaptive printing strategies successfully positioned a single static organism, multiple organisms in droplets, and a single moving organism on target spaces. Their capabilities are exemplified by printing vitrification‐ready organisms in cryoprotectant droplets, sorting live organisms from dead ones, positioning organisms on curved surfaces, organizing organism‐powered displays, and integrating organisms with materials and devices in customizable shapes. These printing strategies can ultimately lead to autonomous biomanufacturing methods to evaluate and assemble organisms for a variety of single and multi‐organism‐based applications.more » « less
- 
            We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. Moreover, we apply contemporary statistical estimation techniques to certify the system’s safety through persistent constraint satisfaction with high probability. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    