skip to main content


Title: Dynamic Inspection of Latent Variables in State-Space Systems
The state-space models (SSMs) are widely used in a variety of areas where a set of observable variables are used to track some latent variables. While most existing works focus on the statistical modeling of the relationship between the latent variables and observable variables or statistical inferences of the latent variables based on the observable variables, it comes to our awareness that an important problem has been largely neglected. In many applications, although the latent variables cannot be routinely acquired, they can be occasionally acquired to enhance the monitoring of the state-space system. Therefore, in this paper, novel dynamic inspection (DI) methods under a general framework of SSMs are developed to identify and inspect the latent variables that are most uncertain. Extensive numeric studies are conducted to demonstrate the effectiveness of the proposed methods.  more » « less
Award ID(s):
1718513
NSF-PAR ID:
10096535
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Automation Science and Engineering
ISSN:
1545-5955
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider off-policy evaluation (OPE) in Partially Observable Markov Decision Processes (POMDPs), where the evaluation policy depends only on observable variables and the behavior policy depends on unobservable latent variables. Existing works either assume no unmeasured confounders, or focus on settings where both the observation and the state spaces are tabular. In this work, we first propose novel identification methods for OPE in POMDPs with latent confounders, by introducing bridge functions that link the target policy’s value and the observed data distribution. We next propose minimax estimation methods for learning these bridge functions, and construct three estimators based on these estimated bridge functions, corresponding to a value function-based estimator, a marginalized importance sampling estimator, and a doubly-robust estimator. Our proposal permits general function approximation and is thus applicable to settings with continuous or large observation/state spaces. The nonasymptotic and asymptotic properties of the proposed estimators are investigated in detail. A Python implementation of our proposal is available at https://github.com/jiaweihhuang/ Confounded-POMDP-Exp. 
    more » « less
  2. Domain adaptation is an important but challenging task. Most of the existing domain adaptation methods struggle to extract the domain-invariant representation on the feature space with entangling domain information and semantic information. Different from previous efforts on the entangled feature space, we aim to extract the domain invariant semantic information in the latent disentangled semantic representation (DSR) of the data. In DSR, we assume the data generation process is controlled by two independent sets of variables, i.e., the semantic latent variables and the domain latent variables. Under the above assumption, we employ a variational auto-encoder to reconstruct the semantic latent variables and domain latent variables behind the data. We further devise a dual adversarial network to disentangle these two sets of reconstructed latent variables. The disentangled semantic latent variables are finally adapted across the domains. Experimental studies testify that our model yields state-of-the-art performance on several domain adaptation benchmark datasets.

     
    more » « less
  3. null (Ed.)
    Background: Addiction to drugs and alcohol constitutes one of the significant factors underlying the decline in life expectancy in the US. Several context-specific reasons influence drug use and recovery. In particular emotional distress, physical pain, relationships, and self-development efforts are known to be some of the factors associated with addiction recovery. Unfortunately, many of these factors are not directly observable and quantifying, and assessing their impact can be difficult. Based on social media posts of users engaged in substance use and recovery on the forum Reddit, we employed two psycholinguistic tools, Linguistic Inquiry and Word Count and Empath and activities of substance users on various Reddit sub-forums to analyze behavior underlining addiction recovery and relapse. We then employed a statistical analysis technique called structural equation modeling to assess the effects of these latent factors on recovery and relapse. Results: We found that both emotional distress and physical pain significantly influence addiction recovery behavior. Self-development activities and social relationships of the substance users were also found to enable recovery. Furthermore, within the context of self-development activities, those that were related to influencing the mental and physical well-being of substance users were found to be positively associated with addiction recovery. We also determined that lack of social activities and physical exercise can enable a relapse. Moreover, geography, especially life in rural areas, appears to have a greater correlation with addiction relapse. Conclusions: The paper describes how observable variables can be extracted from social media and then be used to model important latent constructs that impact addiction recovery and relapse. We also report factors that impact self-induced addiction recovery and relapse. To the best of our knowledge, this paper represents the first use of structural equation modeling of social media data with the goal of analyzing factors influencing addiction recovery. 
    more » « less
  4. We study the task of learning state representations from potentially high-dimensional observations, with the goal of controlling an unknown partially observable system. We pursue a direct latent model learning approach, where a dynamic model in some latent state space is learned by predicting quantities directly related to planning (e.g., costs) without reconstructing the observations. In particular, we focus on an intuitive cost-driven state representation learning method for solving Linear Quadratic Gaussian (LQG) control, one of the most fundamental partially observable control problems. As our main results, we establish finite-sample guarantees of finding a near-optimal state representation function and a near-optimal controller using the directly learned latent model. To the best of our knowledge, despite various empirical successes, prior to this work it was unclear if such a cost-driven latent model learner enjoys finite-sample guarantees. Our work underscores the value of predicting multi-step costs, an idea that is key to our theory, and notably also an idea that is known to be empirically valuable for learning state representations. 
    more » « less
  5. Bridging the gaps among various categories of stochastic microstructures remains a challenge in the design representation of microstructural materials. Each microstructure category requires certain unique mathematical and statistical methods to define the design space (design representation). The design representation methods are usually incompatible between two different categories of stochastic microstructures. The common practice of pre-selecting the microstructure category and the associated design representation method before conducting rigorous computational design restricts the design freedom and hinders the discovery of innovative microstructure designs. To overcome this issue, this paper proposes and compares two novel methods, the deep generative modeling-based method and the curvature functional-based method, to understand their pros and cons in designing mixed-category stochastic microstructures for desired properties. For the deep generative modeling-based method, the Variational Autoencoder is employed to generate an unstructured latent space as the design space. For the curvature functional-based method, the microstructure geometry is represented by curvature functionals, of which the functional parameters are employed as the microstructure design variables. Regressors of the microstructure design variables-property relationship are trained for microstructure design optimization. A comparative study is conducted to understand the relative merits of these two methods in terms of computational cost, continuous transition, design scalability, design diversity, dimensionality of the design space, interpretability of the statistical equivalency, and design performance.

     
    more » « less