We study fair resource allocation with strategic agents. It is well-known that, across multiple fundamental problems in this domain, truthfulness and fairness are incompatible. For example, when allocating indivisible goods, no truthful and deterministic mechanism can guarantee envy-freeness up to one item (EF1), even for two agents with additive valuations. Or, in cake-cutting, no truthful and deterministic mechanism always outputs a proportional allocation, even for two agents with piecewise constant valuations. Our work stems from the observation that, in the context of fair division, truthfulness is used as a synonym for Dominant Strategy Incentive Compatibility (DSIC), requiring that an agent prefers reporting the truth, no matter what other agents report.In this paper, we instead focus on Bayesian Incentive Compatible (BIC) mechanisms, requiring that agents are better off reporting the truth in expectation over other agents' reports. We prove that, when agents know a bit less about each other, a lot more is possible: using BIC mechanisms we can achieve fairness notions that are unattainable by DSIC mechanisms in both the fundamental problems of allocation of indivisible goods and cake-cutting. We prove that this is the case even for an arbitrary number of agents, as long as the agents' priors about each others' types satisfy a neutrality condition. Notably, for the case of indivisible goods, we significantly strengthen the state-of-the-art negative result for efficient DSIC mechanisms, while also highlighting the limitations of BIC mechanisms, by showing that a very general class of welfare objectives is incompatible with Bayesian Incentive Compatibility. Combined, these results give a near-complete picture of the power and limitations of BIC and DSIC mechanisms for the problem of allocating indivisible goods.
more »
« less
Pricing Multi-Unit Markets
This paper studies the power and limitations of posted prices in multi-unit markets, where agents arrive sequentially in an arbitrary order. The paper shows upper and lower bounds on the largest fraction of the optimal social welfare that can be guaranteed with posted prices, under a range of assumptions about the designer’s information and agents’ valuations. Our results provide insights about the relative power of uniform and non-uniform prices, the relative difficulty of different valuation classes, and the implications of different informational assumptions. Among other results, we prove constant-factor guarantees for agents with (symmetric) subadditive valuations, even in an incomplete-information setting and with uniform prices.
more »
« less
- Award ID(s):
- 1813188
- PAR ID:
- 10096614
- Date Published:
- Journal Name:
- 14th Conference on Web and Internet Economics (WINE)
- Page Range / eLocation ID:
- 140-153
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fair and Efficient Allocation Algorithms Do Not Require Knowing Exact Item Values Food rescue organizations are tasked with allocating often-unpredictable donations to recipients who need it. For a large class of recipient valuation functions, this can be done in a fair and efficient manner as long as each recipient reports their value for each arriving donation. In practice, however, such valuations are rarely elicited. In “Dynamic Fair Division with Partial Information,” Benadè, Halpern, and Psomas ask whether simultaneous fairness and efficiency remain possible when the allocator receives limited information about recipient valuations, even as little as a single binary signal. For recipients with i.i.d. or correlated values, the paper provides an algorithm which is envy-free and 1-epsilon welfare-maximizing with high probability. Asymptotically tight results are also established for independent, nonidentical agents. This shows that fair and efficient online allocation algorithms do not critically rely on recipients being able to precisely report their utility functions.more » « less
-
We study the problem of approximating maximum Nash social welfare (NSW) when allocating m indivisible items among n asymmetric agents with submodular valuations. The NSW is a well-established notion of fairness and efficiency, defined as the weighted geometric mean of agents' valuations. For special cases of the problem with symmetric agents and additive(-like) valuation functions, approximation algorithms have been designed using approaches customized for these specific settings, and they fail to extend to more general settings. Hence, no approximation algorithm with factor independent of m is known either for asymmetric agents with additive valuations or for symmetric agents beyond additive(-like) valuations. In this paper, we extend our understanding of the NSW problem to far more general settings. Our main contribution is two approximation algorithms for asymmetric agents with additive and submodular valuations respectively. Both algorithms are simple to understand and involve non-trivial modifications of a greedy repeated matchings approach. Allocations of high valued items are done separately by un-matching certain items and re-matching them, by processes that are different in both algorithms. We show that these approaches achieve approximation factors of O(n) and O(n log n) for additive and submodular case respectively, which is independent of the number of items. For additive valuations, our algorithm outputs an allocation that also achieves the fairness property of envy-free up to one item (EF1). Furthermore, we show that the NSW problem under submodular valuations is strictly harder than all currently known settings with an e/(e-1) factor of the hardness of approximation, even for constantly many agents. For this case, we provide a different approximation algorithm that achieves a factor of e/(e-1), hence resolving it completely.more » « less
-
Price discrimination strategies, which offer different prices to customers based on differences in their valuations, have become common practice. Although it allows sellers to increase their profits, it also raises several concerns in terms of fairness (e.g., by charging higher prices (or denying access) to protected minorities in case they have higher (or lower) valuations than the general population). This topic has received extensive attention from media, industry, and regulatory agencies. In this paper, we consider the problem of setting prices for different groups under fairness constraints. We first propose four definitions: fairness in price, demand, consumer surplus, and no-purchase valuation. We prove that satisfying more than one of these fairness constraints is impossible even under simple settings. We then analyze the pricing strategy of a profit-maximizing seller and the impact of imposing fairness on the seller’s profit, consumer surplus, and social welfare. Under a linear demand model, we find that imposing a small amount of price fairness increases social welfare, whereas too much price fairness may result in a lower welfare relative to imposing no fairness. On the other hand, imposing fairness in demand or consumer surplus always decreases social welfare. Finally, no-purchase valuation fairness always increases social welfare. We observe similar patterns under several extensions and for other common demand models numerically. Our results and insights provide a first step in understanding the impact of imposing fairness in the context of discriminatory pricing. This paper was accepted by Jayashankar Swaminathan, operations management. Funding: A. N. Elmachtoub was supported by the Division of Civil, Mechanical and Manufacturing Innovation [Grants 1763000 and 1944428]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2022.4317 .more » « less
-
Most results in revenue-maximizing mechanism design hinge on “getting the price right”—selling goods to bidders at prices low enough to encourage a sale but high enough to garner nontrivial revenue. This approach is difficult to implement when the seller has little or no a priori information about bidder valuations or when the setting is sufficiently complex, such as matching markets with heterogeneous goods. In this paper, we apply a robust approach to designing auctions for revenue. Instead of relying on prior knowledge regarding bidder valuations, we “let the market do the work” and let prices emerge from competition for scarce goods. We analyze the revenue guarantees of one of the simplest imaginable implementations of this idea: first, we enhance competition in the market by increasing demand (or alternatively, by limiting supply), and second, we run a standard second price (Vickrey) auction. In their renowned work from 1996 , Bulow and Klemperer [Bulow J, Klemperer P (1996) Auctions vs. negotiations. Amer. Econom. Rev. 86(1):180–194.] apply this method to markets with single goods. As our main result, we give the first application beyond single-parameter settings, proving that, simultaneously for many valuation distributions, this method achieves expected revenue at least as good as the optimal revenue in the original market. Our robust and simple approach provides a handle on the elusive optimal revenue in multiitem matching markets and shows when the use of welfare-maximizing Vickrey auctions is justified, even if revenue is a priority. By establishing quantitative tradeoffs, our work provides guidelines for a seller in choosing among two different revenue-extracting strategies: sophisticated pricing based on market research or advertising to draw additional bidders.more » « less
An official website of the United States government

