Fair division is the problem of allocating a set of items among a set of agents in a fair and efficient way. It arises naturally in a wide range of real-life settings. Competitive equilibrium (CE) is a central solution concept in economics to study markets, and due to its remarkable fairness and efficiency properties (e.g., envy-freeness, proportionality, core stability, Pareto optimality), it is also one of the most preferred mechanisms for fair division even though there is no money involved. The vast majority of work in fair division focuses on the case of disposable goods, which all agents like or can throw away at no cost. In this paper, we consider the case of mixed manna under linear utilities where some items are positive goods liked by all agents, some are bads (chores) that no one likes, and remaining some agents like and others dislike. The recent work of Bogomolnaia et al. [13] initiated the study of CE in mixed manna. They establish that a CE always exists and maintains all the nice properties found in the case of all goods. However, computing a CE of mixed manna is genuinely harder than in the case of all goods due to the nonconvex and disconnected nature of the CE set. Our main result is a polynomial-time algorithm for computing a CE of mixed manna when the number of agents or items is constant.
more »
« less
Communication complexity of discrete fair division
This paper initiates the study of the communication complexity of fair division with indivisible goods. It focuses on some of the most well-studied fairness notions (envy-freeness, proportionality, and approximations thereof) and valuation classes (submodular, subadditive and unrestricted). Within these parameters, the results completely resolve whether the communication complexity of computing a fair allocation (or determining that none exist) is polynomial or exponential (in the number of goods), for every combination of fairness notion, valuation class, and number of players, for both deterministic and randomized protocols.
more »
« less
- Award ID(s):
- 1813188
- PAR ID:
- 10096615
- Date Published:
- Journal Name:
- SODA '19 Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms
- Page Range / eLocation ID:
- 2014-2033
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study markets with mixed manna, where m divisible goods and chores shall be divided among n agents to obtain a competitive equilibrium. Equilibrium allocations are known to satisfy many fairness and efficiency conditions. While a lot of recent work in fair division is restricted to linear utilities and chores, we focus on a substantial generalization to separable piecewise-linear and concave (SPLC) utilities and mixed manna. We first derive polynomial-time algorithms for markets with a constant number of items or a constant number of agents. Our main result is a polynomial-time algorithm for instances with a constant number of chores (as well as any number of goods and agents) under the condition that chores dominate the utility of the agents. Interestingly, this stands in contrast to the case when the goods dominate the agents utility in equilibrium, where the problem is known to be PPAD-hard even without chores.more » « less
-
We consider the problem of fairly dividing a collection of indivisible goods among a set of players. Much of the existing literature on fair division focuses on notions of individual fairness. For instance, envy-freeness requires that no player prefer the set of goods allocated to another player to her own allocation. We observe that an algorithm satisfying such individual fairness notions can still treat groups of players unfairly, with one group desiring the goods allocated to another. Our main contribution is a notion of group fairness, which implies most existing notions of individual fairness. Group fairness (like individual fairness) cannot be satisfied exactly with indivisible goods. Thus, we introduce two “up to one good” style relaxations. We show that, somewhat surprisingly, certain local optima of the Nash welfare function satisfy both relaxations and can be computed in pseudo-polynomial time by local search. Our experiments reveal faster computation and stronger fairness guarantees in practice.more » « less
-
We here address the problem of fairly allocating indivisible goods or chores to n agents with weights that define their entitlement to the set of indivisible resources. Stemming from well-studied fairness concepts such as envy-freeness up to one good (EF1) and envy-freeness up to any good (EFX) for agents with equal entitlements, we present, in this study, the first set of impossibility results alongside algorithmic guarantees for fairness among agents with unequal entitlements.Within this paper, we expand the concept of envy-freeness up to any good or chore to the weighted context (WEFX and XWEF respectively), demonstrating that these allocations are not guaranteed to exist for two or three agents. Despite these negative results, we develop a WEFX procedure for two agents with integer weights, and furthermore, we devise an approximate WEFX procedure for two agents with normalized weights. We further present a polynomial-time algorithm that guarantees a weighted envy-free allocation up to one chore (1WEF) for any number of agents with additive cost functions. Our work underscores the heightened complexity of the weighted fair division problem when compared to its unweighted counterpart.more » « less
-
We study the fair and efficient allocation of a set of indivisible goods among agents, where each good has several copies, and each agent has an additively separable concave valuation function with a threshold. These valuations capture the property of diminishing marginal returns, and they are more general than the well-studied case of additive valuations. We present a polynomial-time algorithm that approximates the optimal Nash social welfare (NSW) up to a factor of e1/e ≈ 1.445. This matches with the state-of-the-art approximation factor for additive valuations. The computed allocation also satisfies the popular fairness guarantee of envy-freeness up to one good (EF1) up to a factor of 2 + ε. For instances without thresholds, it is also approximately Pareto-optimal. For instances satisfying a large market property, we show an improved approximation factor. Lastly, we show that the upper bounds on the optimal NSW introduced in Cole and Gkatzelis (2018) and Barman et al. (2018) have the same value.more » « less
An official website of the United States government

