skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on March 25, 2025

Title: Almost Envy-Free Allocations of Indivisible Goods or Chores with Entitlements

We here address the problem of fairly allocating indivisible goods or chores to n agents with weights that define their entitlement to the set of indivisible resources. Stemming from well-studied fairness concepts such as envy-freeness up to one good (EF1) and envy-freeness up to any good (EFX) for agents with equal entitlements, we present, in this study, the first set of impossibility results alongside algorithmic guarantees for fairness among agents with unequal entitlements.Within this paper, we expand the concept of envy-freeness up to any good or chore to the weighted context (WEFX and XWEF respectively), demonstrating that these allocations are not guaranteed to exist for two or three agents. Despite these negative results, we develop a WEFX procedure for two agents with integer weights, and furthermore, we devise an approximate WEFX procedure for two agents with normalized weights. We further present a polynomial-time algorithm that guarantees a weighted envy-free allocation up to one chore (1WEF) for any number of agents with additive cost functions. Our work underscores the heightened complexity of the weighted fair division problem when compared to its unweighted counterpart.

 
more » « less
Award ID(s):
2347322 2218678 2114269
PAR ID:
10567359
Author(s) / Creator(s):
; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
38
Issue:
9
ISSN:
2159-5399
Page Range / eLocation ID:
9901 to 9908
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the existence of fair and efficient allocations of indivisible chores to asymmetric agents who have unequal entitlements or weights. We consider the fairness notion of weighted envy-freeness up to one chore (wEF1) and the efficiency notion of Pareto-optimality (PO). The existence of EF1 and PO allocations of chores to symmetric agents is a major open problem in discrete fair division, and positive results are known only for certain structured instances. In this paper, we study this problem for a more general setting of asymmetric agents and show that an allocation that is wEF1 and PO exists and can be computed in polynomial time for instances with:- Three types of agents where agents with the same type have identical preferences but can have different weights. - Two types of choresFor symmetric agents, our results establish that EF1 and PO allocations exist for three types of agents and also generalize known results for three agents, two types of agents, and two types of chores. Our algorithms use a weighted picking sequence algorithm as a subroutine; we expect this idea and our analysis to be of independent interest.

     
    more » « less
  2. We initiate the study of fairness among classes of agents in online bipartite matching where there is a given set of offline vertices (aka agents) and another set of vertices (aka items) that arrive online and must be matched irrevocably upon arrival. In this setting, agents are partitioned into a set of classes and the matching is required to be fair with respect to the classes. We adopt popular fairness notions (e.g. envy-freeness, proportionality, and maximin share) and their relaxations to this setting and study deterministic and randomized algorithms for matching indivisible items (leading to integral matchings) and for matching divisible items (leading to fractional matchings).For matching indivisible items, we propose an adaptive-priority-based algorithm, MATCH-AND-SHIFT, prove that it achieves (1/2)-approximation of both class envy-freeness up to one item and class maximin share fairness, and show that each guarantee is tight. For matching divisible items, we design a water-filling-based algorithm, EQUAL-FILLING, that achieves (1-1/e)-approximation of class envy-freeness and class proportionality; we prove (1-1/e) to be tight for class proportionality and establish a 3/4 upper bound on class envy-freeness. 
    more » « less
  3. We consider the problem of fairly dividing a collection of indivisible goods among a set of players. Much of the existing literature on fair division focuses on notions of individual fairness. For instance, envy-freeness requires that no player prefer the set of goods allocated to another player to her own allocation. We observe that an algorithm satisfying such individual fairness notions can still treat groups of players unfairly, with one group desiring the goods allocated to another. Our main contribution is a notion of group fairness, which implies most existing notions of individual fairness. Group fairness (like individual fairness) cannot be satisfied exactly with indivisible goods. Thus, we introduce two “up to one good” style relaxations. We show that, somewhat surprisingly, certain local optima of the Nash welfare function satisfy both relaxations and can be computed in pseudo-polynomial time by local search. Our experiments reveal faster computation and stronger fairness guarantees in practice. 
    more » « less
  4. We investigate the fair allocation of indivisible goods to agents with possibly different entitlements represented by weights. Previous work has shown that guarantees for additive valuations with existing envy-based notions cannot be extended to the case where agents have matroid-rank (i.e., binary submodular) valuations. We propose two families of envy-based notions for matroid-rank and general submodular valuations, one based on the idea of transferability and the other on marginal values. We show that our notions can be satisfied via generalizations of rules such as picking sequences and maximum weighted Nash welfare. In addition, we introduce welfare measures based on harmonic numbers, and show that variants of maximum weighted harmonic welfare offer stronger fairness guarantees than maximum weighted Nash welfare under matroid-rank valuations.

     
    more » « less
  5. We analyze the run-time complexity of computing allocations that are both fair and maximize the utilitarian social welfare, defined as the sum of agents’ utilities. We focus on two tractable fairness concepts: envy-freeness up to one item (EF1) and proportionality up to one item (PROP1). We consider two computational problems: (1) Among the utilitarian-maximal allocations, decide whether there exists one that is also fair; (2) among the fair allocations, compute one that maximizes the utilitarian welfare. We show that both problems are strongly NP-hard when the number of agents is variable, and remain NP-hard for a fixed number of agents greater than two. For the special case of two agents, we find that problem (1) is polynomial-time solvable, while problem (2) remains NP-hard. Finally, with a fixed number of agents, we design pseudopolynomial-time algorithms for both problems. We extend our results to the stronger fairness notions envy-freeness up to any item (EFx) and proportionality up to any item (PROPx). 
    more » « less