skip to main content

Title: Synthesis and Characterization of Non-Isolated-Pentagon-Rule Actinide Endohedral Metallofullerenes U@ C 1 (17418)-C 76 , U@ C 1 (28324)-C 80 , and Th@ C 1 (28324)-C 80 : Low-Symmetry Cage Selection Directed by a Tetravalent Ion
Award ID(s):
1801317 1205302 1408865
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of the American Chemical Society
Page Range / eLocation ID:
18039 to 18050
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract

    Low temperature rechargeable batteries are important to life in cold climates, polar/deep‐sea expeditions, and space explorations. Here, this work reports 3.5–4 V rechargeable lithium/chlorine (Li/Cl2) batteries operating down to −80 °C, employing Li metal negative electrode, a novel carbon dioxide (CO2) activated porous carbon (KJCO2) as the positive electrode, and a high ionic conductivity (≈5–20 mS cm−1from −80 °C to room‐temperature) electrolyte comprised of aluminum chloride (AlCl3), lithium chloride (LiCl), and lithium bis(fluorosulfonyl)imide (LiFSI) in low‐melting‐point (−104.5 °C) thionyl chloride (SOCl2). Between room‐temperature and −80 °C, the Li/Cl2battery delivers up to ≈29 100–4500 mAh g−1first discharge capacity (based on carbon mass) and a 1200–5000 mAh g−1reversible capacity over up to 130 charge–discharge cycles. Mass spectrometry and X‐ray photoelectron spectroscopy probe Cl2trapped in the porous carbon upon LiCl electro‐oxidation during charging. At −80 °C, Cl2/SCl2/S2Cl2generated by electro‐oxidation in the charging step are trapped in porous KJCO2carbon, allowing for reversible reduction to afford a high discharge voltage plateau near ≈4 V with up to ≈1000 mAh g−1capacity for SCl2/S2Cl2reduction and up to ≈4000 mAh g−1capacity at ≈3.1 V plateau for Cl2reduction.

    more » « less