Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting the elderly population worldwide. Brain inflammation plays a key role in the progression of AD. Deposition of senile plaques in the brain stimulates an inflammatory response with the overexpression of pro-inflammatory mediators, such as the neuroinflammatory cytokine. interleukin-6. Curcumin has been revealed to be a potential agent for treating AD following different neuroprotective mechanisms, such as inhibition of aggregation and decrease in brain inflammation. We synthesized new curcumin derivatives with the aim of providing good anti-aggregation capacity but also improved anti-inflammatory activity. Nine curcumin derivatives were synthesized by etherification and esterification of the aromatic region. From these derivatives, compound 8 exhibited an anti-inflammatory effect similar to curcumin, while compounds 3, 4, and 10 were more potent. Moreover, when the anti-aggregation activity is considered, compounds 3, 4, 5, 6, and 10 showed biological activity in vitro. Compound 4 exhibited a strong anti-aggregation effect higher than curcumin. Monofunctionalized curcumin derivatives showed better bioactivity than difunctionalized compounds. Moreover, the presence of bulky groups in the chemical structure of curcumin derivatives decreased bioactivity.
more »
« less
A new family of fullerene derivatives: fullerene-curcumin conjugates for biological and photovoltaic applications
The synthesis and characterization of a family of [60]fullerocurcuminoids obtained via Bingel reactions is reported. The new C 60 derivatives include curcumin and curcuminoids with a variety of end groups. Preliminary biological experiments show the potential activity of the compound containing a curcumin addend, which exhibits moderate anti-HIV-1 and radical scavenger properties, but no anti-cancer activity. In addition, the new fullerocurcuminoids exhibit HOMO/LUMO energy levels that are reasonably matched with those of perovskites and when they were tested in perovskite solar cells (PSCs) as the electron transporting material (ETM), photoconversion efficiencies ranging from 14.04–14.95% were obtained, whereas a value of 16.23% was obtained for [6,6]-phenyl-C 61 -butyric acid methyl ester ( PC61BM ) based devices.
more »
« less
- PAR ID:
- 10096658
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- RSC Advances
- Volume:
- 8
- Issue:
- 73
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 41692 to 41698
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We have investigated spin related processes in fullerene C 60 devices using several experimental techniques, which include magnetic field effect of photocurrent and electroluminescence in C 60 -based diodes; spin polarized carrier injection in C 60 -based spin-valves; and pure spin current generation in NiFe/C 60 /Pt trilayer devices. We found that the ‘curvature-related spin orbit coupling’ in C 60 plays a dominant role in the obtained spin-related phenomena. The measured magneto-photocurrent and magneto-electroluminescence responses in C 60 diodes are dominated by the difference in the g -values of hole and electron polarons in the fullerene molecules. We also obtained giant magneto-resistance of ∼10% at 10 K in C 60 spin-valve devices, where spin polarized holes are injected into the C 60 interlayer. In addition, using the technique of spin-pumping in NiFe/C 60 /Pt trilayer devices with various C 60 interlayer thicknesses we determined the spin diffusion length in C 60 films to be 13 ± 2 nm at room temperature.more » « less
-
null (Ed.)The synthesis, characterization and incorporation of fullerene derivatives bearing primary, secondary and tertiary nitrogen atoms, which possess different basicities, in perovskite solar cells (PSCs), is reported. In this work, we tested the compounds as conventional electron transporting materials (ETMs) in a single layer with phenyl-C 61 -butyric acid methyl ester (PC 61 BM) as control. Additionally, we tested the idea of separating the ETM into two different layers: a thin electron extracting layer (EEL) at the interface with the perovskite, and an electron transporting layer (ETL) to transport the electrons to the Ag electrode. The compounds in this work were also tested as EELs with C 60 as ETL on top. Our results show that the new fullerenes perform better as EELs than as ETMs. A maximum power conversion efficiency (PCE) value of 18.88% was obtained for a device where a thin layer (∼3 nm) of BPy-C 60 was used as EEL, a higher value than that of the control device (16.70%) with only pure C 60 . Increasing the layer thicknesses led to dramatically decreased PCE values, clearly proving that the compound is an excellent electron extractor from the perovskite layer but a poor transporter as a bulk material. The improved passivation ability and electron extraction capabilities of the BPy-C 60 derivative were demonstrated by steady state and time-resolved photoluminescence (SS-and TRPL) as well as electrochemical impedance spectroscopy (EIS) and X-Ray photoelectron spectroscopy (XPS) measurements; likely attributed to the enhanced basicity of the pyridine groups that contributes to a stronger interaction with the interfacial Pb 2+ .more » « less
-
Abstract The electrocatalytic hydrogen evolution reaction (HER) is one of the most studied and promising processes for hydrogen fuel generation. Single-atom catalysts have been shown to exhibit ultra-high HER catalytic activity, but the harsh preparation conditions and the low single-atom loading hinder their practical applications. Furthermore, promoting hydrogen evolution reaction kinetics, especially in alkaline electrolytes, remains as an important challenge. Herein, Pt/C60catalysts with high-loading, high-dispersion single-atomic platinum anchored on C60are achieved through a room-temperature synthetic strategy. Pt/C60-2 exhibits high HER catalytic performance with a low overpotential (η10) of 25 mV at 10 mA cm−2. Density functional theory calculations reveal that the Pt-C60polymeric structures in Pt/C60-2 favors water adsorption, and the shell-like charge redistribution around the Pt-bonding region induced by the curved surfaces of two adjacent C60facilitates the desorption of hydrogen, thus favoring fast reaction kinetics for hydrogen evolution.more » « less
-
The unique physical properties of buckminsterfullerene, C60, have attracted intense research activity since its original discovery. Total quantum state–resolved spectroscopy of isolated C60molecules has been of particularly long-standing interest. Such observations have, to date, been unsuccessful owing to the difficulty in preparing cold, gas-phase C60in sufficiently high densities. Here we report high-resolution infrared absorption spectroscopy of C60in the 8.5-micron spectral region (1180 to 1190 wave number). A combination of cryogenic buffer-gas cooling and cavity-enhanced direct frequency comb spectroscopy has enabled the observation of quantum state–resolved rovibrational transitions. Characteristic nuclear spin statistical intensity patterns confirm the indistinguishability of the 60 carbon-12 atoms, while rovibrational fine structure encodes further details of the molecule’s rare icosahedral symmetry.more » « less
An official website of the United States government

