skip to main content

Title: A new family of fullerene derivatives: fullerene-curcumin conjugates for biological and photovoltaic applications
The synthesis and characterization of a family of [60]fullerocurcuminoids obtained via Bingel reactions is reported. The new C 60 derivatives include curcumin and curcuminoids with a variety of end groups. Preliminary biological experiments show the potential activity of the compound containing a curcumin addend, which exhibits moderate anti-HIV-1 and radical scavenger properties, but no anti-cancer activity. In addition, the new fullerocurcuminoids exhibit HOMO/LUMO energy levels that are reasonably matched with those of perovskites and when they were tested in perovskite solar cells (PSCs) as the electron transporting material (ETM), photoconversion efficiencies ranging from 14.04–14.95% were obtained, whereas a value of 16.23% was obtained for [6,6]-phenyl-C 61 -butyric acid methyl ester ( PC61BM ) based devices.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Award ID(s):
1801317 1205302 1408865
Publication Date:
NSF-PAR ID:
10096658
Journal Name:
RSC Advances
Volume:
8
Issue:
73
Page Range or eLocation-ID:
41692 to 41698
ISSN:
2046-2069
Sponsoring Org:
National Science Foundation
More Like this
  1. Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting the elderly population worldwide. Brain inflammation plays a key role in the progression of AD. Deposition of senile plaques in the brain stimulates an inflammatory response with the overexpression of pro-inflammatory mediators, such as the neuroinflammatory cytokine. interleukin-6. Curcumin has been revealed to be a potential agent for treating AD following different neuroprotective mechanisms, such as inhibition of aggregation and decrease in brain inflammation. We synthesized new curcumin derivatives with the aim of providing good anti-aggregation capacity but also improved anti-inflammatory activity. Nine curcumin derivatives were synthesized by etherification and esterification of the aromatic region. From these derivatives, compound 8 exhibited an anti-inflammatory effect similar to curcumin, while compounds 3, 4, and 10 were more potent. Moreover, when the anti-aggregation activity is considered, compounds 3, 4, 5, 6, and 10 showed biological activity in vitro. Compound 4 exhibited a strong anti-aggregation effect higher than curcumin. Monofunctionalized curcumin derivatives showed better bioactivity than difunctionalized compounds. Moreover, the presence of bulky groups in the chemical structure of curcumin derivatives decreased bioactivity.
  2. The synthesis, characterization and incorporation of fullerene derivatives bearing primary, secondary and tertiary nitrogen atoms, which possess different basicities, in perovskite solar cells (PSCs), is reported. In this work, we tested the compounds as conventional electron transporting materials (ETMs) in a single layer with phenyl-C 61 -butyric acid methyl ester (PC 61 BM) as control. Additionally, we tested the idea of separating the ETM into two different layers: a thin electron extracting layer (EEL) at the interface with the perovskite, and an electron transporting layer (ETL) to transport the electrons to the Ag electrode. The compounds in this work were also tested as EELs with C 60 as ETL on top. Our results show that the new fullerenes perform better as EELs than as ETMs. A maximum power conversion efficiency (PCE) value of 18.88% was obtained for a device where a thin layer (∼3 nm) of BPy-C 60 was used as EEL, a higher value than that of the control device (16.70%) with only pure C 60 . Increasing the layer thicknesses led to dramatically decreased PCE values, clearly proving that the compound is an excellent electron extractor from the perovskite layer but a poor transporter as a bulk material.more »The improved passivation ability and electron extraction capabilities of the BPy-C 60 derivative were demonstrated by steady state and time-resolved photoluminescence (SS-and TRPL) as well as electrochemical impedance spectroscopy (EIS) and X-Ray photoelectron spectroscopy (XPS) measurements; likely attributed to the enhanced basicity of the pyridine groups that contributes to a stronger interaction with the interfacial Pb 2+ .« less
  3. Abstract
    Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred metersMore>>
  4. We have investigated spin related processes in fullerene C 60 devices using several experimental techniques, which include magnetic field effect of photocurrent and electroluminescence in C 60 -based diodes; spin polarized carrier injection in C 60 -based spin-valves; and pure spin current generation in NiFe/C 60 /Pt trilayer devices. We found that the ‘curvature-related spin orbit coupling’ in C 60 plays a dominant role in the obtained spin-related phenomena. The measured magneto-photocurrent and magneto-electroluminescence responses in C 60 diodes are dominated by the difference in the g -values of hole and electron polarons in the fullerene molecules. We also obtained giant magneto-resistance of ∼10% at 10 K in C 60 spin-valve devices, where spin polarized holes are injected into the C 60 interlayer. In addition, using the technique of spin-pumping in NiFe/C 60 /Pt trilayer devices with various C 60 interlayer thicknesses we determined the spin diffusion length in C 60 films to be 13 ± 2 nm at room temperature.
  5. Solution-printable and flexible thermoelectric materials have attracted great attention because of their scalable processability and great potential for powering flexible electronics, but it is challenging to integrate mechanical flexibility, solution-printability and outstanding thermoelectric properties together. In particular, such an n-type thermoelectric material is highly sought after. In this paper, 2D TiS 2 nanosheets were exfoliated from layered polycrystalline powders, and then assembled with C 60 nanoparticles, resulting in a new class of flexible n-type thermoelectric materials via a concurrent enhancement in the power factor and a reduction in thermal conductivity. The resultant C 60 /TiS 2 hybrid films show a ZT ∼ 0.3 at 400 K, far superior to the state-of-the-art solution-printable and flexible n-type thermoelectric materials. In particular, such a thermoelectric property rivals that of single-crystal TiS 2 -based thermoelectric materials, which are expensive, difficult to synthesize, and unsuitable for solution printing. A solution of the C 60 /TiS 2 hybrid was also used as an ink for printing large-area flexible and spatial thermoelectric devices. An outstanding output power of 1.68 W m −2 was generated at a temperature gradient of 20 K. This work paves the way for flexible, solution-printable, high-performance thermoelectric materials for flexible electronics.