Educators can leverage a variety of process models to scaffold students from beginning designer practices to practices aligned with more experienced designers. The Center for Socially Engaged Design at the University of Michigan developed a Socially Engaged Design (SED) Process Model to explicitly emphasize important aspects of design that are often underemphasized or not included in commonly-used design process model visualizations, including, for example, designers embracing the limitations of their own perspective and acknowledging the power they hold, the benefits of integrating contextual considerations, and the use of prototypes throughout a design process rather than as single phase in a design process. To better understand the role of design process models, broadly, and the perceived value of process models that emphasize the importance of people and context in design work, specifically, we investigated upper-level mechanical engineering students' perceptions of this SED Process Model’s visualization. Our findings from this initial exploratory study showed both variability and several consistent themes in participants’ perceptions, for example, there were several interpretations of relationships between different aspects of the model, iteration in design was salient to all participants, and while this SED Process Model’s visualization does have recommendations, several participants noted it does not specify exactly how to achieve those recommendations. Understanding engineering students’ perceptions of this SED Process Model’s visualization can help us (1) iterate on the process model’s visualization and (2) better understand how to leverage multiple process model visualizations in engineering curricula.
more »
« less
A domain-specific language for exploratory data visualization
With an ever-growing amount of collected data, the importance of visualization as an analysis component is growing in concert. The creation of good visualizations often doesn't happen in one step but is rather an iterative and exploratory process. However, this process is currently not well supported in most of the available visualization tools and systems. Visualization authors are forced to commit prematurely to particular design aspects of their creations, and when exploring potential variant visualizations, they are forced to adopt ad hoc techniques such as copying code snippets or keeping a collection of separate files. We propose variational visualizations as a model supporting open-ended exploration of the design space of information visualization. Together with that model, we present a prototype implementation in the form of a domain-specific language embedded in Purescript.
more »
« less
- Award ID(s):
- 1717300
- PAR ID:
- 10096844
- Date Published:
- Journal Name:
- 17th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences
- Page Range / eLocation ID:
- 1 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The visualization community has seen a rise in the adoption of user studies. Empirical user studies systematically test the assumptions that we make about how visualizations can help or hinder viewers’ performance of tasks. Although the increase in user studies is encouraging, it is vital that research on human reasoning with visualizations be grounded in an understanding of how the mind functions. Previously, there were no sufficient models that illustrate the process of decision-making with visualizations. However, Padilla et al. [41] recently proposed an integrative model for decision-making with visualizations, which expands on modern theories of visualization cognition and decision-making. In this paper, we provide insights into how cognitive models can accelerate innovation, improve validity, and facilitate replication efforts, which have yet to be thoroughly discussed in the visualization community. To do this, we offer a compact overview of the cognitive science of decision-making with visualizations for the visualization community, using the Padilla et al. [41] cognitive model as a guiding framework. By detailing examples of visualization research that illustrate each component of the model, this paper offers novel insights into how visualization researchers can utilize a cognitive framework to guide their user studies. We provide practical examples of each component of the model from empirical studies of visualizations, along with visualization implications of each cognitive process, which have not been directly addressed in prior work. Finally, this work offers a case study in utilizing an understanding of human cognition to generate a novel solution to a visualization reasoning bias in the context of hurricane forecast track visualizations.more » « less
-
Understanding memory in the context of data visualizations is paramount for effective design. While immediate clarity in a visualization is crucial, retention of its information determines its long‐term impact. While extensive research has underscored the elements enhancing visualization memorability, a limited body of work has delved into modeling the recall process. This study investigates the temporal dynamics of visualization recall, focusing on factors influencing recollection, shifts in recall veracity, and the role of participant demographics. Using data from an empirical study (n = 104), we propose a novel approach combining temporal clustering and handcrafted features to model recall over time. A long short‐term memory (LSTM) model with attention mechanisms predicts recall patterns, revealing alignment with informativeness scores and participant characteristics. Our findings show that perceived informativeness dictates recall focus, with more informative visualizations eliciting narrative‐driven insights and less informative ones prompting aesthetic‐driven responses. Recall accuracy diminishes over time, particularly for unfamiliar visualizations, with age and education significantly shaping recall emphases. These insights advance our understanding of visualization recall, offering practical guidance for designing visualizations that enhance retention and comprehension. All data and materials are available at: https://osf.io/ghe2j/'>https://osf.io/ghe2j/.more » « less
-
Data visualization literacy is essential for K-12 students, yet existing practices emphasize interpreting pre-made visualizations rather than creating them. To address this, we developed the DPV (Domain, Purpose, Visual) framework, which guides middle school students through the visualization design process. The framework simplifies design into three stages: understanding the problem domain, specifying the communication purpose, and translating data into effective visuals. Implemented in a twoweek summer camp as a usage scenario, the DPV framework enabled students to create visualizations addressing community issues. Evaluation of student artifacts, focus group interviews, and surveys demonstrated its effectiveness in enhancing students' design skills and understanding of visualization concepts. This work highlights the DPV framework's potential to foster data visualization literacy for K-12 education and broaden participation in the data visualization community.more » « less
-
The growing popularity of interactive time series exploration platforms has made data visualization more accessible to the public. However, the ease of creating polished charts with preloaded data also enables selective information presentation, often resulting in biased or misleading visualizations. Research shows that these tools have been used to spread misinformation, particularly in areas such as public health and economic policies during the COVID-19 pandemic. Post hoc fact-checking may be ineffective because it typically addresses only a portion of misleading posts and comes too late to curb the spread. In this work, we explore using visualization design to counteract cherry-picking, a common tactic in deceptive visualizations. We propose a design space of guardrails—interventions to expose cherry-picking in time-series explorers. Through three crowd-sourced experiments, we demonstrate that guardrails, particularly those superimposing data, can encourage skepticism, though with some limitations. We provide recommendations for developing more effective visualization guardrails.more » « less
An official website of the United States government

