Abstract We investigated human understanding of different network visualizations in a large-scale online experiment. Three types of network visualizations were examined: node-link and two different sorting variants of matrix representations on a representative social network of either 20 or 50 nodes. Understanding of the network was quantified using task time and accuracy metrics on questions that were derived from an established task taxonomy. The sample size in our experiment was more than an order of magnitude larger (N = 600) than in previous research, leading to high statistical power and thus more precise estimation of detailed effects. Specifically, high statistical power allowed us to consider modern interaction capabilities as part of the evaluated visualizations, and to evaluate overall learning rates as well as ambient (implicit) learning. Findings indicate that participant understanding was best for the node-link visualization, with higher accuracy and faster task times than the two matrix visualizations. Analysis of participant learning indicated a large initial difference in task time between the node-link and matrix visualizations, with matrix performance steadily approaching that of the node-link visualization over the course of the experiment. This research is reproducible as the web-based module and results have been made available at: https://osf.io/qct84/ .
more »
« less
This content will become publicly available on May 21, 2026
Modeling and Measuring the Chart Communication Recall Process
Understanding memory in the context of data visualizations is paramount for effective design. While immediate clarity in a visualization is crucial, retention of its information determines its long‐term impact. While extensive research has underscored the elements enhancing visualization memorability, a limited body of work has delved into modeling the recall process. This study investigates the temporal dynamics of visualization recall, focusing on factors influencing recollection, shifts in recall veracity, and the role of participant demographics. Using data from an empirical study (n = 104), we propose a novel approach combining temporal clustering and handcrafted features to model recall over time. A long short‐term memory (LSTM) model with attention mechanisms predicts recall patterns, revealing alignment with informativeness scores and participant characteristics. Our findings show that perceived informativeness dictates recall focus, with more informative visualizations eliciting narrative‐driven insights and less informative ones prompting aesthetic‐driven responses. Recall accuracy diminishes over time, particularly for unfamiliar visualizations, with age and education significantly shaping recall emphases. These insights advance our understanding of visualization recall, offering practical guidance for designing visualizations that enhance retention and comprehension. All data and materials are available at: https://osf.io/ghe2j/'>https://osf.io/ghe2j/.
more »
« less
- Award ID(s):
- 2216452
- PAR ID:
- 10600924
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Computer Graphics Forum
- ISSN:
- 0167-7055
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Temporal event sequence alignment has been used in many domains to visualize nuanced changes and interactions over time. Existing approaches align one or two sentinel events. Overview tasks require examining all alignments of interest using interaction and time or juxtaposition of many visualizations. Furthermore, any event attribute overviews are not closely tied to sequence visualizations. We present SEQUENCE BRAIDING, a novel overview visualization for temporal event sequences and attributes using a layered directed acyclic network. SEQUENCE BRAIDING visually aligns many temporal events and attribute groups simultaneously and supports arbitrary ordering, absence, and duplication of events. In a controlled experiment we compare SEQUENCE BRAIDING and IDMVis on user task completion time, correctness, error, and confidence. Our results provide good evidence that users of SEQUENCE BRAIDING can understand high-level patterns and trends faster and with similar error. A full version of this paper with all appendices; the evaluation stimuli, data, and analysis code; and source code are available at osf.io/mq2wt.more » « less
-
Visualization misinformation is a prevalent problem, and combating it requires understanding people’s ability to read, interpret, and reason about erroneous or potentially misleading visualizations, which lacks a reliable measurement: existing visualization literacy tests focus on well-formed visualizations. We systematically develop an assessment for this ability by: (1) developing a precise definition of misleaders (decisions made in the construction of visualizations that can lead to conclusions not supported by the data), (2) constructing initial test items using a design space of misleaders and chart types, (3) trying out the provisional test on 497 participants, and (4) analyzing the test tryout results and refining the items using Item Response Theory, qualitative analysis, a wrong-due-to-misleader score, and the content validity index. Our final bank of 45 items shows high reliability, and we provide item bank usage recommendations for future tests and different use cases. Related materials are available at: https://osf.io/pv67z/.more » « less
-
Abstract Color encoding is foundational to visualizing quantitative data. Guidelines for colormap design have traditionally emphasized perceptual principles, such as order and uniformity. However, colors also evoke cognitive and linguistic associations whose role in data interpretation remains underexplored. We study how two linguistic factors, name salience and name variation, affect people's ability to draw inferences from spatial visualizations. In two experiments, we found that participants are better at interpreting visualizations when viewing colors with more salient names (e.g., prototypical ‘blue’, ‘yellow’, and ‘red’ over ‘teal’, ‘beige’, and ‘maroon’). The effect was robust across four visualization types, but was more pronounced in continuous (e.g., smooth geographical maps) than in similar discrete representations (e.g., choropleths). Participants' accuracy also improved as the number of nameable colors increased, although the latter had a less robust effect. Our findings suggest that color nameability is an important design consideration for quantitative colormaps, and may even outweigh traditional perceptual metrics. In particular, we found that the linguistic associations of color are a better predictor of performance than the perceptual properties of those colors. We discuss the implications and outline research opportunities. The data and materials for this study are available athttps://osf.io/asb7nmore » « less
-
Data visualizations present a massive number of potential messages to an observer. One might notice that one group's average is larger than another's, or that a difference in values is smaller than a difference between two others, or any of a combinatorial explosion of other possibilities. The message that a viewer tends to notice - the message that a visualization ‘affords’ - is strongly affected by how values are arranged in a chart, e.g., how the values are colored or positioned. Although understanding the mapping between a chart's arrangement and what viewers tend to notice is critical for creating guidelines and recommendation systems, current empirical work is insufficient to lay out clear rules. We present a set of empirical evaluations of how different messages-including ranking, grouping, and part-to-whole relationships-are afforded by variations in ordering, partitioning, spacing, and coloring of values, within the ubiquitous case study of bar graphs. In doing so, we introduce a quantitative method that is easily scalable, reviewable, and replicable, laying groundwork for further investigation of the effects of arrangement on message affordances across other visualizations and tasks. Pre-registration and all supplemental materials are available at https://osf.io/np3q7 and https://osf.io/bvy95 , respectively.more » « less
An official website of the United States government
