null
(Ed.)
Sometimes NH₃ is stripped from process/effluent streams through hydrophobic porous hollow-fiber-membranes (HFMs) via a supported-gas-membrane (SGM) process and recovered in concentrated H₂SO₄ solution as (NH₄)₂SO₄. To recover relatively purified (NH₄)₂SO₄, one can avoid excess H₂SO₄ with a more dilute H₂SO₄ strip solution. Neglect of strip-side mass-transfer resistance for low-pH strip H₂SO₄ solutions is not desirable with higher-pH H₂SO₄ strip solutions. Small hollow-fiber membrane modules (HFMMs) were used with a higher-pH H₂SO₄ strip solution. Mass transfer was successfully modeled using reaction-enhanced mass transport in higher-pH H₂SO₄ solution. Employing larger-scale crossflow HFMMs, time-dependent ammonia removal from a large tank having ammonia-containing process effluent was modeled for batch recirculation operation. The larger-scale modules employ shell-side feed liquid in crossflow with an overall countercurrent flow pattern and acid flow in the tube side. Modeling ammonia transport without water vapor transfer can cause substantial errors in batch recirculation method. Water vapor transport was considered here for low-pH and high-pH H₂SO₄ strip solutions for ammonia-containing feed in a large tank. Model results describe literature-based experimentally observed mass transfer behavior in industrial-treatment systems well. Model calculations were also made for continuous ammonia recovery from industrial effluents by a number of series-connected HFMMs without any batch recirculation.
more »
« less
An official website of the United States government

