- Award ID(s):
- 1653405
- Publication Date:
- NSF-PAR ID:
- 10097103
- Journal Name:
- EPJ Web of Conferences
- Volume:
- 206
- Page Range or eLocation-ID:
- 01003
- ISSN:
- 2100-014X
- Sponsoring Org:
- National Science Foundation
More Like this
-
There have been rapid developments in parton distribution functions (PDFs) using lattice QCD for both precision moments and direct calculation of the Bjorken-$x$ dependence. In this talk, I show some progress along these directions and show some examples of how lattice-QCD calculations can play a significant role in improving our understanding of PDFs in the future.
-
We present a state-of-the-art calculation of the isovector quark helicity Bjorken-$x$ distribution in the proton using lattice-QCD ensembles at the physical pion mass. We compute quasi-distributions at proton momenta $P_z \in \{2.2, 2.6, 3.0\}$~GeV on the lattice, and match them systematically to the physical parton distribution using large-momentum effective theory (LaMET). We reach an unprecedented precision through high statistics in simulations, large-momentum proton matrix elements, and control of excited-state contamination. The resulting distribution is in agreement within $2\sigma$ with the latest phenomenological analysis of the spin-dependent experimental data; in particular, $\Delta \bar{u}(x)>\Delta \bar{d}(x)$.
-
We present the first determination of the x-dependent pion gluon distribution from lattice QCD using the pseudo-PDF approach. We use lattice ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ), generated by MILC Collaboration, at two lattice spacings a≈0.12 and 0.15~fm and three pion masses Mπ≈220, 310 and 690 MeV. We use clover fermions for the valence action and momentum smearing to achieve pion boost momentum up to 2.29 GeV. We find that the dependence of the pion gluon parton distribution on lattice spacing and pion mass is mild. We compare our results from the lightest pion mass ensemble with the determination by JAM and xFitter global fits.
-
The workshop on Parton Distributions and Lattice Calculations in the LHC era (PDFLattice2017) was hosted at Balliol College, Oxford (UK), from 22nd to 24th March 2017. The workshop brought together the lattice-QCD and the global-fit physicists who devote their efforts to determine the parton distribution functions (PDFs) of the proton. The goals were to make the two communities more familiar between each other, review developments from both sides, and set precision targets for lattice calculations so that they can contribute, together with the forthcoming experimental input, to the next generation of PDF determinations. This contribution summarises the relevant outcome of the workshop, in anticipation of a thorough white paper.
-
Abstract We study the dependence of the transverse mass distribution of charged leptons and the missing energy on parton distributions (PDFs) adapted to
W boson mass measurements at the CDF and ATLAS experiments. We compare the shape variations of the distribution induced by different PDFs and find that the spread of predictions from different PDF sets can be significantly larger than the PDF uncertainty predicted by a specific PDF set. We suggest analyzing the experimental data using up-to-date PDFs to gain a better understanding of the PDF uncertainties inW boson mass measurements. We also perform a series of Lagrange multiplier scans to identify the constraints on the transverse mass distribution imposed by individual data sets in the CT18 global analysis. In the case of the CDF measurement, the distribution is mostly sensitive tod -quark PDFs in the intermediatex region, which are largely constrained by DIS and Drell-Yan data on deuteron targets and Tevatron lepton charge asymmetry data.