skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward the first gluon parton distribution from the LaMET
Abstract We present progress towards the first unpolarized gluon quasi-parton distribution function (PDF) from lattice quantum chromodynamics using high-statistics measurements for hadrons at two valence pion massesMπ ≈ 310 and 690 MeV computed on ana ≈ 0.12 fm ensemble with 2 + 1 + 1-flavors of highly improved staggered quark generated by the MILC collaboration. In this study, we consider two gluon operators for which the hybrid-ratio renormalization matching kernels have been recently derived and a third operator that has been used in prior pseudo-PDF studies of the gluon PDFs. We compare the matrix elements for each operator for both the nucleon and pion, at both pion masses, and using two gauge-smearing techniques. Focusing on the more phenomenologically studied nucleon gluon PDF, we compare the ratio and hybrid-ratio renormalized matrix elements at both pion masses and both smearings to those reconstructed from the nucleon gluon PDF from the CT18 global analysis. We identify the best choice of operator to study the gluon PDF and present the first gluon quasi-PDF under some caveats. Additionally, we explore the recent idea of Coulomb gauge fixing to improve signal at large Wilson-line displacement and find it could be a major help in improving the signal in the gluon matrix elements. This work helps identify the best operator for studying the gluon quasi-PDF, shows higher hadron boost momentum is needed to implement hybrid-ratio renormalization reliably, and suggests the need to study more diverse set of operators with their corresponding perturbative calculations for hybrid-ratio renormalization to further gluon quasi-PDF study.  more » « less
Award ID(s):
2209424
PAR ID:
10570172
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics G: Nuclear and Particle Physics
Volume:
52
Issue:
3
ISSN:
0954-3899
Format(s):
Medium: X Size: Article No. 035105
Size(s):
Article No. 035105
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a state-of-the-art calculation of the unpolarized pion valence-quark distribution in the framework of large-momentum effective theory (LaMET) with improved handling of systematic errors as well as two-loop perturbative matching. We use lattice ensembles generated by the MILC collaboration at lattice spacinga≈ 0.09 fm, lattice volume 643× 96,Nf= 2 + 1 + 1 flavors of highly-improved staggered quarks and a physical pion mass. The LaMET matrix elements are calculated with pions boosted to momentumPz≈ 1.72 GeV with high-statistics ofO(106) measurements. We study the pion PDF in both hybrid-ratio and hybrid-regularization-independent momentum subtraction (hybrid-RI/MOM) schemes and also compare the systematic errors with and without the addition of leading-renormalon resummation (LRR) and renormalization-group resummation (RGR) in both the renormalization and lightcone matching. The final lightcone PDF results are presented in the modified minimal-subtraction scheme at renormalization scaleμ= 2.0 GeV. We show that thex-dependent PDFs are compatible between the hybrid-ratio and hybrid-RI/MOM renormalization with the same improvements. We also show that systematics are greatly reduced by the simultaneous inclusion of RGR and LRR and that these methods are necessary if improved precision is to be reached with higher-order terms in renormalization and matching. 
    more » « less
  2. A<sc>bstract</sc> In this work, we report a lattice calculation ofx-dependent valence pion generalized parton distributions (GPDs) at zero skewness with multiple values of the momentum transfer −t. The calculations are based on anNf= 2 + 1 gauge ensemble of highly improved staggered quarks with Wilson-Clover valence fermion. The lattice spacing is 0.04 fm, and the pion valence mass is tuned to be 300 MeV. We determine the Lorentz-invariant amplitudes of the quasi-GPD matrix elements for both symmetric and asymmetric momenta transfers with similar values and show the equivalence of both frames. Then, focusing on the asymmetric frame, we utilize a hybrid scheme to renormalize the quasi-GPD matrix elements obtained from the lattice calculations. After the Fourier transforms, the quasi-GPDs are then matched to the light-cone GPDs within the framework of large momentum effective theory with improved matching, including the next-to-next-to-leading order perturbative corrections, and leading renormalon and renormalization group resummations. We also present the 3-dimensional image of the pion in impact-parameter space through the Fourier transform of the momentum transfer −t. 
    more » « less
  3. We study and demonstrate the ground-state extrapolation of the unpolarized and polarized nucleon quark quasi-PDF matrix elements in a highly boosted hadron frame on the lattice. The calculation is done using the Wilson clover quark on a MILC’s dynamical Nf = 2+1+1 highly improved staggered quarks (HISQ) ensemble with one step hypercubic smearing, and with the lattice spacing a∼0.09 fm and pion mass 310 MeV. Applying the Gaussian momentum-smeared quark sources and comparing various fits in 1-, 2-, and 3-state fitting models, we show that excited state contributions can be under control in the lattice calculation of the nucleon quark quasi-PDF matrix elements. 
    more » « less
  4. Recently, there have been rapid developments in lattice-QCD calculations of proton structure, especially in the parton distribution functions (PDFs). We overcame a longstanding obstacle and for the first time in lattice-QCD are able to directly calculate the Bjorken- x dependence of the quark, helicity and transversity distributions. The PDFs are obtained using the large-momentum effective field theory (LaMET) framework where the full Bjorken- x dependence of finite-momentum PDFs, called “quasi-PDFs”, can be calculated on the lattice. The quasi-PDF nucleon matrix elements are renormalized non-perturbatively in RI/MOM-scheme. Following a nonperturbative renormalization of the parton quasi-distribution in a regularization-independent momentum-subtraction scheme, we establish its matching to the $$ \overline {{\rm{MS}}} $$ PDF and calculate the non-singlet matching coefficient at next-to-leading order in perturbation theory. In this proceeding, I will show the progress that has been made in recent years, highlighting the latest state-of-the art PDF calculations at the physical pion mass. Future impacts on the large- x global PDF fits are also discussed. 
    more » « less
  5. We present the first calculation of the pion gluon moment from lattice QCD in the continuum-physical limit. The calculation is done using clover fermions for the valence action with three pion masses, 220, 310 and 690 MeV, and three lattice spacings, 0.09, 0.12, and 0.15 fm, using ensembles generated by MILC Collaboration with 2 + 1 + 1 flavors of highly improved staggered quarks (HISQ). On the lattice, we nonperturbatively renormalize the gluon operator in RI/MOM scheme using the cluster-decomposition error reduction (CDER) technique to enhance the signal-to-noise ratio of the renormalization constant. We extrapolate the pion gluon moment to the continuum-physical limit and obtain x g = 0.394 ( 58 ) stat + NPR ( 39 ) mixing in the MS ¯ scheme at 2 GeV, with first error being the statistical error and uncertainties in nonperturbative renormalization, and the second being a systematic uncertainty estimating the effect of ignoring quark mixing. Our pion gluon momentum fraction has a central value lower than two recent single-ensemble lattice-QCD results near physical pion mass but is consistent with the recent global fits by JAM and xFitter and with most QCD-model estimates. Published by the American Physical Society2024 
    more » « less