skip to main content


Title: Quantifying energy use efficiency via entropy production: a case study from longleaf pine ecosystems

Abstract. Ecosystems are open systems that exchange matter and energy with theirenvironment. They differ in their efficiency in doing so as a result of theirlocation on Earth, structure and disturbance, including anthropogenic legacy.Entropy has been proposed to be an effective metric to describe thesedifferences as it relates energy use efficiencies of ecosystems to theirthermodynamic environment (i.e., temperature) but has rarely been studied tounderstand how ecosystems with different disturbance legacies respond whenconfronted with environmental variability. We studied three sites in alongleaf pine ecosystem with varying levels of anthropogenic legacy and plantfunctional diversity, all of which were exposed to extreme drought. Wequantified radiative (effrad), metabolic and overall entropychanges – as well as changes in exported to imported entropy(effflux) in response to drought disturbance and environmentalvariability using 24 total years of eddy covariance data (8 years per site).We show that structural and functional characteristics contribute todifferences in energy use efficiencies at the three study sites. Our resultsdemonstrate that ecosystem function during drought is modulated by decreasedabsorbed solar energy and variation in the partitioning of energy and entropyexports owing to differences in site enhanced vegetation index and/or soilwater content. Low effrad and metabolic entropy as well as slowadjustment of effflux at the anthropogenically altered siteprolonged its recovery from drought by approximately 1 year. In contrast,stands with greater plant functional diversity (i.e., the ones that includedboth C3 and C4 species) adjusted their entropy exports when facedwith drought, which accelerated their recovery. Our study provides a pathforward for using entropy to determine ecosystem function across differentglobal ecosystems.

 
more » « less
Award ID(s):
1702996
NSF-PAR ID:
10097134
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
16
Issue:
8
ISSN:
1726-4189
Page Range / eLocation ID:
1845 to 1863
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Global ecosystems vary in their function, and therefore resilience to disturbance, as a result of their location on Earth, structure, and anthropogenic legacy. Resilience can therefore be difficult to describe solely based on energy partitioning, as it fails to effectively describe how ecosystems use available resources, such as soil moisture. Maximum entropy production (MEP) has been shown to be a better metric to describe these differences as it relates energy use efficiencies of ecosystems to the availability of resources. We studied three sites in a longleaf pine ecosystem with varying levels of anthropogenic legacy and biodiversity, all of which were exposed to extreme drought. We quantified their resilience from radiative, metabolic and overall MEP ratios. Sites with anthropogenic legacy had ~10% lower overall and metabolic energy use efficiency compared to more biodiverse sites. This resulted in lower resilience and a delay in recovery from drought by ~1 year. Additionally, a set of entropy ratios to determine metabolic and overall energy use efficiency explained more clearly site-specific ecosystem function, whereas the radiative entropy budget gave more insights about structural complexities at the sites. Our study provides foundational evidence of how MEP can be used to determine resiliency across ecosystems globally.

     
    more » « less
  2. Abstract

    Terrestrial ecosystems obtain energy in the form of carbon‐containing molecules. Quantifying energy acquisition and dissipation throughout an ecosystem may be useful for describing their resistance and resilience to disturbances. Three longleaf pine savannas with different vegetation composition—a result of variation in soil moisture and land use legacy—were used as a case study to test energy‐based metrics of ecosystem metabolic function. Available energy from gross ecosystem exchange of CO2and its dissipation into metabolic energy density (EM) and energy storage were used to identify differences in drought recovery over an 8‐year period. Sites with higher plant functional diversity in the understory stored more energy and lowered their EMby ~20% when adapting to drought. In contrast, the site with greater abundance of woody understory and overstory species relied on stored energy twice as often as the more diverse sites. The absence of native understory species, due to anthropogenic legacy, prolonged ecosystem‐scale drought recovery by 1 year. This study provides the tools to understand differences in site metabolic energy dynamics and has the potential to identify site characteristics that indicate greater vulnerability to disturbances. Metabolic energy density can be applied to any global ecosystem and provides a first step to describe coupled carbon and energy allocation in ecosystems, which may be used to further refine ecological theory and its management implications.

     
    more » « less
  3. Abstract

    Tropical ecosystems are undergoing unprecedented rates of degradation from deforestation, fire, and drought disturbances. The collective effects of these disturbances threaten to shift large portions of tropical ecosystems such as Amazon forests into savanna‐like structure via tree loss, functional changes, and the emergence of fire (savannization). Changes from forest states to a more open savanna‐like structure can affect local microclimates, surface energy fluxes, and biosphere–atmosphere interactions. A predominant type of ecosystem state change is the loss of tree cover and structural complexity in disturbed forest. Although important advances have been made contrasting energy fluxes between historically distinct old‐growth forest and savanna systems, the emergence of secondary forests and savanna‐like ecosystems necessitates a reframing to consider gradients of tree structure that span forest to savanna‐like states at multiple scales. In this Innovative Viewpoint, we draw from the literature on forest–grassland continua to develop a framework to assess the consequences of tropical forest degradation on surface energy fluxes and canopy structure. We illustrate this framework for forest sites with contrasting canopy structure that ranges from simple, open, and savanna‐like to complex and closed, representative of tropical wet forest, within two climatically distinct regions in the Amazon. Using a recently developed rapid field assessment approach, we quantify differences in cover, leaf area vertical profiles, surface roughness, albedo, and energy balance partitioning between adjacent sites and compare canopy structure with adjacent old‐growth forest; more structurally simple forests displayed lower net radiation. To address forest–atmosphere feedback, we also consider the effects of canopy structure change on susceptibility to additional future disturbance. We illustrate a converse transition—recovery in structure following disturbance—measuring forest canopy structure 10 yr after the imposition of a 5‐yr drought in the ground‐breaking Seca Floresta experiment. Our approach strategically enables rapid characterization of surface properties relevant to vegetation models following degradation, and advances links between surface properties and canopy structure variables, increasingly available from remote sensing. Concluding, we hypothesize that understanding surface energy balance and microclimate change across degraded tropical forest states not only reveals critical atmospheric forcing, but also critical local‐scale feedbacks from forest sensitivity to additional climate‐linked disturbance.

     
    more » « less
  4. Abstract

    Tropical cyclones can physically alter ecosystems, causing immediate and potentially long‐lasting effects on carbon dynamics. In 2018, Hurricane Michael hit the southeastern United States with category 5 winds at landfall and category 2 winds reaching over 100 miles inland, resulting in extensive damage. Longleaf pine woodlands in the path of the hurricane were damaged, but severity varied based on the storm track. We used a combination of eddy covariance measurements, airborne LiDAR, and forest inventory data to determine whether hurricane affects structure, function, and recovery of two longleaf pine woodlands at the ends of an edaphic gradient. We found that the carbon sink potentials in both sites were diminished following the storm, with reductions in net ecosystem exchange (NEE) primarily due to lower rates of photosynthesis, as respiration only increased marginally. The xeric site carbon losses and physiological reductions were smaller following the disturbance, which led to the recovery of ecosystem physiological activity to prestorm rates before that of the mesic site, as indicated by maximum ecosystem CO2uptake rates. Two years following the hurricane both stands continued to have reduced NEE, which signaled altered function. We expect both locations to recover their lost carbon stocks in ∼10–35 years; however, long‐term studies are needed to examine how longleaf woodlands respond to compounding disturbances, such as drought, fire, or other wind storms, which vary significantly across the ecosystem's range. Additionally, hurricanes are intensifying due to climate change, potentially amplifying the degree to which they will alter this ecosystem in the future.

     
    more » « less
  5. Abstract. Thaw and release of permafrost carbon (C) due to climate change is likely tooffset increased vegetation C uptake in northern high-latitude (NHL)terrestrial ecosystems. Models project that this permafrost C feedback mayact as a slow leak, in which case detection and attribution of the feedbackmay be difficult. The formation of talik, a subsurface layer of perenniallythawed soil, can accelerate permafrost degradation and soil respiration,ultimately shifting the C balance of permafrost-affected ecosystems fromlong-term C sinks to long-term C sources. It is imperative to understand andcharacterize mechanistic links between talik, permafrost thaw, andrespiration of deep soil C to detect and quantify the permafrost C feedback.Here, we use the Community Land Model (CLM) version 4.5, a permafrost andbiogeochemistry model, in comparison to long-term deep borehole data alongNorth American and Siberian transects, to investigate thaw-driven C sourcesin NHL (>55N) from 2000 to 2300. Widespread talik at depth isprojected across most of the NHL permafrost region(14million km2) by 2300, 6.2million km2 of which isprojected to become a long-term C source, emitting 10Pg C by 2100,50Pg C by 2200, and 120Pg C by 2300, with few signs ofslowing. Roughly half of the projected C source region is in predominantlywarm sub-Arctic permafrost following talik onset. This region emits only20Pg C by 2300, but the CLM4.5 estimate may be biased low by notaccounting for deep C in yedoma. Accelerated decomposition of deep soilC following talik onset shifts the ecosystem C balance away from surfacedominant processes (photosynthesis and litter respiration), butsink-to-source transition dates are delayed by 20–200 years by highecosystem productivity, such that talik peaks early (2050s, although boreholedata suggest sooner) and C source transition peaks late(2150–2200). The remaining C source region in cold northern Arcticpermafrost, which shifts to a net source early (late 21st century), emits5 times more C (95Pg C) by 2300, and prior to talik formation dueto the high decomposition rates of shallow, young C in organic-rich soilscoupled with low productivity. Our results provide important clues signalingimminent talik onset and C source transition, including (1) late cold-season(January–February) soil warming at depth (2m),(2) increasing cold-season emissions (November–April), and (3) enhancedrespiration of deep, old C in warm permafrost and young, shallow C in organic-rich cold permafrost soils. Our results suggest a mosaic of processes thatgovern carbon source-to-sink transitions at high latitudes and emphasize theurgency of monitoring soil thermal profiles, organic C age and content, cold-season CO2 emissions, andatmospheric 14CO2 as key indicatorsof the permafrost C feedback.

     
    more » « less