Quantifying energy use efficiency via entropy production: a case study from longleaf pine ecosystems
Abstract. Ecosystems are open systems that exchange matter and energy with theirenvironment. They differ in their efficiency in doing so as a result of theirlocation on Earth, structure and disturbance, including anthropogenic legacy.Entropy has been proposed to be an effective metric to describe thesedifferences as it relates energy use efficiencies of ecosystems to theirthermodynamic environment (i.e., temperature) but has rarely been studied tounderstand how ecosystems with different disturbance legacies respond whenconfronted with environmental variability. We studied three sites in alongleaf pine ecosystem with varying levels of anthropogenic legacy and plantfunctional diversity, all of which were exposed to extreme drought. Wequantified radiative (effrad), metabolic and overall entropychanges – as well as changes in exported to imported entropy(effflux) in response to drought disturbance and environmentalvariability using 24 total years of eddy covariance data (8 years per site).We show that structural and functional characteristics contribute todifferences in energy use efficiencies at the three study sites. Our resultsdemonstrate that ecosystem function during drought is modulated by decreasedabsorbed solar energy and variation in the partitioning of energy and entropyexports owing to differences in site enhanced vegetation index and/or soilwater content. Low effrad and metabolic entropy as well as slowadjustment of effflux at the anthropogenically altered siteprolonged its recovery from drought by approximately 1 year. In contrast,stands with greater plant functional diversity (i.e., the ones that includedboth C3 and C4 species) adjusted their entropy exports when facedwith drought, which accelerated their recovery. Our study provides a pathforward for using entropy to determine ecosystem function across differentglobal ecosystems.
more »
« less