skip to main content


Title: Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact
Earth’s status as the only life-sustaining planet is a result of the timing and delivery mechanism of carbon (C), nitrogen (N), sulfur (S), and hydrogen (H). On the basis of their isotopic signatures, terrestrial volatiles are thought to have derived from carbonaceous chondrites, while the isotopic compositions of nonvolatile major and trace elements suggest that enstatite chondrite–like materials are the primary building blocks of Earth. However, the C/N ratio of the bulk silicate Earth (BSE) is superchondritic, which rules out volatile delivery by a chondritic late veneer. In addition, if delivered during the main phase of Earth’s accretion, then, owing to the greater siderophile (metal loving) nature of C relative to N, core formation should have left behind a subchondritic C/N ratio in the BSE. Here, we present high pressure-temperature experiments to constrain the fate of mixed C-N-S volatiles during core-mantle segregation in the planetary embryo magma oceans and show that C becomes much less siderophile in N-bearing and S-rich alloys, while the siderophile character of N remains largely unaffected in the presence of S. Using the new data and inverse Monte Carlo simulations, we show that the impact of a Mars-sized planet, having minimal contributions from carbonaceous chondrite-like material and coinciding with the Moon-forming event, can be the source of major volatiles in the BSE.  more » « less
Award ID(s):
1664308
NSF-PAR ID:
10097265
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
5
Issue:
1
ISSN:
2375-2548
Page Range / eLocation ID:
eaau3669
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Earth’s core is likely the largest reservoir of carbon (C) in the planet, but its C abundance has been poorly constrained because measurements of carbon’s preference for core versus mantle materials at the pressures and temperatures of core formation are lacking. Using metal–silicate partitioning experiments in a laser-heated diamond anvil cell, we show that carbon becomes significantly less siderophile as pressures and temperatures increase to those expected in a deep magma ocean during formation of Earth’s core. Based on a multistage model of core formation, the core likely contains a maximum of 0.09(4) to 0.20(10) wt% C, making carbon a negligible contributor to the core’s composition and density. However, this accounts for ∼80 to 90% of Earth’s overall carbon inventory, which totals 370(150) to 740(370) ppm. The bulk Earth’s carbon/sulfur ratio is best explained by the delivery of most of Earth’s volatiles from carbonaceous chondrite-like precursors.

     
    more » « less
  2. Abstract Earth’s habitability is closely tied to its late-stage accretion, during which impactors delivered the majority of life-essential volatiles. However, the nature of these final building blocks remains poorly constrained. Nickel (Ni) can be a useful tracer in characterizing this accretion as most Ni in the bulk silicate Earth (BSE) comes from the late-stage impactors. Here, we apply Ni stable isotope analysis to a large number of meteorites and terrestrial rocks, and find that the BSE has a lighter Ni isotopic composition compared to chondrites. Using first-principles calculations based on density functional theory, we show that core-mantle differentiation cannot produce the observed light Ni isotopic composition of the BSE. Rather, the sub-chondritic Ni isotopic signature was established during Earth’s late-stage accretion, probably through the Moon-forming giant impact. We propose that a highly reduced sulfide-rich, Mercury-like body, whose mantle is characterized by light Ni isotopic composition, collided with and merged into the proto-Earth during the Moon-forming giant impact, producing the sub-chondritic Ni isotopic signature of the BSE, while delivering sulfur and probably other volatiles to the Earth. 
    more » « less
  3. Comparing compositional models of the terrestrial planets provides insights into physicochemical processes that produced planet-scale similarities and differences. The widely accepted compositional model for Mars assumes Mn and more refractory elements are in CI chondrite proportions in the planet, including Fe, Mg, and Si, which along with O make up >90% of the mass of Mars. However, recent improvements in our understandings on the composition of the solar photosphere and meteorites challenge the use of CI chondrite as an analog of Mars. Here we present an alternative model composition for Mars that avoids such an assumption and is based on data from Martian meteorites and spacecraft observations. Our modeling method was previously applied to predict the Earth’s composition. The model establishes the absolute abundances of refractory lithophile elements in the bulk silicate Mars (BSM) at 2.26 times higher than that in CI carbonaceous chondrites. Relative to this chondritic composition, Mars has a systematic depletion in moderately volatile lithophile elements as a function of their condensation temperatures. Given this finding, we constrain the abundances of siderophile and chalcophile elements in the bulkMars and its core. The Martian volatility trend is consistent with <7 wt% S in its core, which is significantly lower than that assumed in most core models (i.e., >10 wt% S). Furthermore, the occurrence of ringwoodite at the Martian core-mantle boundary might have contributed to the partitioning of O and H into the Martian core. 
    more » « less
  4. Abstract

    Volatile compositions of asteroids provide information on the Solar System history and the origins of Earth's volatiles. Visible to near‐infrared observations at wavelengths of <2.5 µm have suggested a genetic link between outer main belt asteroids located at 2.5–4 au and carbonaceous chondrite meteorites (CCs) that show isotopic similarities to volatile elements on Earth. However, recent longer wavelength data for large outer main belt asteroids show 3.1 μm absorption features of ammoniated phyllosilicates that are absent in CCs and cannot easily form from materials stable at those present distances. Here, by combining data collected by the AKARI space telescope and hydrological, geochemical, and spectral models of water‐rock reactions, we show that the surface materials of asteroids having 3.1 μm absorption features and CCs can originate from different regions of a single, water‐rock‐differentiated parent body. Ammoniated phyllosilicates form within the water‐rich mantles of the differentiated bodies containing NH3and CO2under high water‐rock ratios (>4) and low temperatures (<70°C). CCs can originate from the rock‐dominated cores, that are likely to be preferentially sampled as meteorites by disruption and transport processes. Our results suggest that multiple large main belt asteroids formed beyond the NH3and CO2snow lines (currently >10 au) and could be transported to their current locations. Earth's high hydrogen to carbon ratio may be explained by accretion of these water‐rich progenitors.

     
    more » « less
  5. Holden Thorp, Ali Shilatifard (Ed.)

    The origin of Earth’s volatile elements is highly debated. Comparing the chalcogen isotope ratios in the bulk silicate Earth (BSE) to those of its possible building blocks, chondritic meteorites, allows constraints on the origin of Earth’s volatiles; however, these comparisons are complicated by potential isotopic fractionation during protoplanetary differentiation, which largely remains poorly understood. Using first-principles calculations, we find that core-mantle differentiation does not notably fractionate selenium and tellurium isotopes, while equilibrium evaporation from early planetesimals would enrich selenium and tellurium in heavy isotopes in the BSE. The sulfur, selenium, and tellurium isotopic signatures of the BSE reveal that protoplanetary differentiation plays a key role in establishing most of Earth’s volatile elements, and a late veneer does not substantially contribute to the BSE’s volatile inventory.

     
    more » « less