The relative roles of protoplanetary differentiation versus late accretion in establishing Earth’s life-essential volatile element inventory are being hotly debated. To address this issue, we employ first-principles calculations to investigate nitrogen (N) isotope fractionation during Earth’s accretion and differentiation. We find that segregation of an iron core would enrich heavy N isotopes in the residual silicate, while evaporation within a H2-dominated nebular gas produces an enrichment of light N isotope in the planetesimals. The combined effect of early planetesimal evaporation followed by core formation enriches the bulk silicate Earth in light N isotopes. If Earth is comprised primarily of enstatite-chondrite-like material, as indicated by other isotope systems, then late accretion of carbonaceous-chondrite-like material must contribute ~ 30–100% of the N budget in present-day bulk silicate Earth. However, mass balance using N isotope constraints shows that the late veneer contributes only a limited amount of other volatile elements (e.g., H, S, and C) to Earth.
This content will become publicly available on December 6, 2024
The origin of Earth’s volatile elements is highly debated. Comparing the chalcogen isotope ratios in the bulk silicate Earth (BSE) to those of its possible building blocks, chondritic meteorites, allows constraints on the origin of Earth’s volatiles; however, these comparisons are complicated by potential isotopic fractionation during protoplanetary differentiation, which largely remains poorly understood. Using first-principles calculations, we find that core-mantle differentiation does not notably fractionate selenium and tellurium isotopes, while equilibrium evaporation from early planetesimals would enrich selenium and tellurium in heavy isotopes in the BSE. The sulfur, selenium, and tellurium isotopic signatures of the BSE reveal that protoplanetary differentiation plays a key role in establishing most of Earth’s volatile elements, and a late veneer does not substantially contribute to the BSE’s volatile inventory.
more » « less- NSF-PAR ID:
- 10482474
- Editor(s):
- Holden Thorp, Ali Shilatifard
- Publisher / Repository:
- American Association for the Advancement of Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 9
- Issue:
- 49
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eadh0670
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Earth’s habitability is closely tied to its late-stage accretion, during which impactors delivered the majority of life-essential volatiles. However, the nature of these final building blocks remains poorly constrained. Nickel (Ni) can be a useful tracer in characterizing this accretion as most Ni in the bulk silicate Earth (BSE) comes from the late-stage impactors. Here, we apply Ni stable isotope analysis to a large number of meteorites and terrestrial rocks, and find that the BSE has a lighter Ni isotopic composition compared to chondrites. Using first-principles calculations based on density functional theory, we show that core-mantle differentiation cannot produce the observed light Ni isotopic composition of the BSE. Rather, the sub-chondritic Ni isotopic signature was established during Earth’s late-stage accretion, probably through the Moon-forming giant impact. We propose that a highly reduced sulfide-rich, Mercury-like body, whose mantle is characterized by light Ni isotopic composition, collided with and merged into the proto-Earth during the Moon-forming giant impact, producing the sub-chondritic Ni isotopic signature of the BSE, while delivering sulfur and probably other volatiles to the Earth.more » « less
-
Earth’s status as the only life-sustaining planet is a result of the timing and delivery mechanism of carbon (C), nitrogen (N), sulfur (S), and hydrogen (H). On the basis of their isotopic signatures, terrestrial volatiles are thought to have derived from carbonaceous chondrites, while the isotopic compositions of nonvolatile major and trace elements suggest that enstatite chondrite–like materials are the primary building blocks of Earth. However, the C/N ratio of the bulk silicate Earth (BSE) is superchondritic, which rules out volatile delivery by a chondritic late veneer. In addition, if delivered during the main phase of Earth’s accretion, then, owing to the greater siderophile (metal loving) nature of C relative to N, core formation should have left behind a subchondritic C/N ratio in the BSE. Here, we present high pressure-temperature experiments to constrain the fate of mixed C-N-S volatiles during core-mantle segregation in the planetary embryo magma oceans and show that C becomes much less siderophile in N-bearing and S-rich alloys, while the siderophile character of N remains largely unaffected in the presence of S. Using the new data and inverse Monte Carlo simulations, we show that the impact of a Mars-sized planet, having minimal contributions from carbonaceous chondrite-like material and coinciding with the Moon-forming event, can be the source of major volatiles in the BSE.more » « less
-
Mantle-derived, low-degree melts, such as kimberlites, carbonate-rich olivine lamproites (CROLS), and cratonic olivine lamproites, are the main carriers of diamonds. They are rare ultramafic, volatile-rich volcanic magmas, generally restricted to stable cratons, and are the deepest-sourced magmas erupted onto Earth’s surface. As hybrid magmas, their formation mechanism and mantle sources remain enigmatic and highly debated, especially the nature of the processes leading to their “enriched” isotopic signatures. The often extreme isotopic compositions of Sr, Nd, Pb, and Hf suggest that the mantle sources of these magmas vary between an ancient and geochemically depleted component and various enriched components. The enriched components could include crustal material recycled into the convective mantle or metasomatized lithospheric mantle. For the latter, discriminating between assimilation by sub-lithospheric magmas during the ascent or melting of element-enriched material from within the lithospheric mantle is paramount concerning petrogenesis. As the stable isotope composition of K, and Ba vary between surface and mantle reservoirs, they are well-suited tools for addressing the cause of different radiogenic isotopic signatures and to better constrain the mantle sources of these important magmas. Here, we use collision cell multi-collector inductively-coupled-plasma mass-spectrometry (MC-ICP-MS) and traditional MC-ICP-MS to conduct the first comprehensive whole-rock K and Ba stable isotope study on a wide range of low-degree mantle-derived melts. All the deep-seated, low-degree melts analyzed here show no correlation between melting/differentiation indices and δ41K and δ138Ba compositions, implying that any isotopic fractionation during melting or eruption was limited and that the different mantle and crustal reservoirs affecting these melts dominate their isotopic variability. Overall, kimberlites show limited δ41K and δ138Ba variability, with a median δ41K of -0.40 ± 0.06‰ (2SE) and δ138Ba of 0.00 ± 0.07‰ (2SE), within error relative to an estimated bulk silicate Earth [(BSE: δ41K= -0.42±0.07‰ (2SD) and δ138Ba=0.03±0.04‰ (2SD)], suggesting significant sublithospheric input. While the sample size is small (N=4), Canadian kimberlites from Lake De Gras display a bi-modal distribution with δ41K values slightly higher and lower relative to BSE, ascribed to crustal and lithospheric contamination. Like kimberlites, South African CROLS show limited K isotope variability with a median δ41K of -0.48 ± 0.02‰ (2SE). Their compositions are non-resolvable from two Mica-Amphibole-Rutile-Ilmenite-Diopside (MARID) xenoliths. The δ138Ba of the CROLS also shows limited variation with a median δ138Ba of 0.00 ± 0.07‰ (2SE), plotting within BSE estimations. Compared to the other low-degree mantle-derived melts, cratonic olivine/leucite-bearing lamproites from West Australia show a wide range in δ41K (-0.97‰ to +0.34‰) and δ138Ba (-0.30‰ to +0.27) values. The observed large K isotopic variation in cratonic lamproites is similar to that observed in post-collisional lamproites and is ascribed to sediment recycling. Argyle lamproites define robust correlations between potassium and barium elemental abundances, and their stable isotopes call for significant hydrothermal fluid-assisted leaching and isotopic fractionation.more » « less
-
null (Ed.)Composition of terrestrial planets records planetary accretion, core–mantle and crust–mantle differentiation, and surface processes. Here we compare the compositional models of Earth and Mars to reveal their characteristics and formation processes. Earth and Mars are equally enriched in refractory elements (1.9 × CI), although Earth is more volatile-depleted and less oxidized than Mars. Their chemical compositions were established by nebular fractionation, with negligible contributions from post-accretionary losses of moderately volatile elements. The degree of planetary volatile element depletion might correlate with the abundances of chondrules in the accreted materials, planetary size, and their accretion timescale, which provides insights into composition and origin of Mercury, Venus, the Moon-forming giant impactor, and the proto-Earth. During its formation before and after the nebular disk’s lifetime, the Earth likely accreted more chondrules and less matrix-like materials than Mars and chondritic asteroids, establishing its marked volatile depletion. A giant impact of an oxidized, differentiated Mars-like (i.e., composition and mass) body into a volatile-depleted, reduced proto-Earth produced a Moon forming debris ring with mostly a proto-Earth’s mantle composition. Chalcophile and some siderophile elements in the silicate Earth added by the Mars-like impactor were extracted into the core by a sulfide melt (~0.5% of the mass of the Earth’s mantle). In contrast, the composition of Mars indicates its rapid accretion of lesser amounts of chondrules under nearly uniform oxidizing conditions. Mars’ rapid cooling and early loss of its dynamo likely led to the absence of plate tectonics and surface water, and the present-day low surface heat flux. These similarities and differences between the Earth and Mars made the former habitable and the other inhospitable to uninhabitable.more » « less