skip to main content


Title: Fast Confidence Detection: One Hot Way to Detect Adversarial Attacks via Sensor Pattern Noise Fingerprinting
Deep Neural Networks (DNNs) have shown phenomenal success in a wide range of real-world applications. However, a concerning weakness of DNNs is that they are vulnerable to adversarial attacks. Although there exist methods to detect adversarial attacks, they often suffer constraints on specific attack types and provide limited information to downstream systems. We specifically note that existing adversarial detectors are often binary classifiers, which differentiate clean or adversarial examples. However, detection of adversarial examples is much more complicated than such a scenario. Our key insight is that the confidence probability of detecting an input sample as an adversarial example will be more useful for the system to properly take action to resist potential attacks. In this work, we propose an innovative method for fast confidence detection of adversarial attacks based on integrity of sensor pattern noise embedded in input examples. Experimental results show that our proposed method is capable of providing a confidence distribution model of most of popular adversarial attacks. Furthermore, our presented method can provide early attack warning with even the attack types based on different properties of the confidence distribution models. Since fast confidence detection is a computationally heavy task, we propose an FPGA-Based hardware architecture based on a series of optimization techniques, such as incremental multi-level quantization and etc. We realize our proposed method on an FPGA platform and achieve a high efficiency of 29.740 IPS/W with a power consumption of only 0.7626W.  more » « less
Award ID(s):
1717657
NSF-PAR ID:
10097299
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
International Symposium on Field-Programmable Gate Arrays
Page Range / eLocation ID:
188 to 189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As deep neural networks (DNNs) achieve extraordi- nary performance in a wide range of tasks, testing their robust- ness under adversarial attacks becomes paramount. Adversarial attacks, also known as adversarial examples, are used to measure the robustness of DNNs and are generated by incorporating imperceptible perturbations into the input data with the intention of altering a DNN’s classification. In prior work in this area, most of the proposed optimization based methods employ gradient descent to find adversarial examples. In this paper, we present an innovative method which generates adversarial examples via convex programming. Our experiment results demonstrate that we can generate adversarial examples with lower distortion and higher transferability than the C&W attack, which is the current state-of-the-art adversarial attack method for DNNs. We achieve 100% attack success rate on both the original undefended models and the adversarially-trained models. Our distortions of the L∞ attack are respectively 31% and 18% lower than the C&W attack for the best case and average case on the CIFAR-10 data set. 
    more » « less
  2. Deep neural networks obtain state-of-the-art performance on a series of tasks. However, they are easily fooled by adding a small adversarial perturbation to the input. The perturbation is often imperceptible to humans on image data. We observe a significant difference in feature attributions between adversarially crafted examples and original examples. Based on this observation, we introduce a new framework to detect adversarial examples through thresholding a scale estimate of feature attribution scores. Furthermore, we extend our method to include multi-layer feature attributions in order to tackle attacks that have mixed confidence levels. As demonstrated in extensive experiments, our method achieves superior performances in distinguishing adversarial examples from popular attack methods on a variety of real data sets compared to state-of-the-art detection methods. In particular, our method is able to detect adversarial examples of mixed confidence levels, and transfer between different attacking methods. We also show that our method achieves competitive performance even when the attacker has complete access to the detector. 
    more » « less
  3. Deep neural network (DNN) classifiers are powerful tools that drive a broad spectrum of important applications, from image recognition to autonomous vehicles. Unfortunately, DNNs are known to be vulnerable to adversarial attacks that affect virtually all state-of-the-art models. These attacks make small imperceptible modifications to inputs that are sufficient to induce the DNNs to produce the wrong classification. In this paper we propose a novel, lightweight adversarial correction and/or detection mechanism for image classifiers that relies on undervolting (running a chip at a voltage that is slightly below its safe margin). We propose using controlled undervolting of the chip running the inference process in order to introduce a limited number of compute errors. We show that these errors disrupt the adversarial input in a way that can be used either to correct the classification or detect the input as adversarial. We evaluate the proposed solution in an FPGA design and through software simulation. We evaluate 10 attacks and show average detection rates of 77% and 90% on two popular DNNs. 
    more » « less
  4. Abstract

    Deep neural networks (DNNs) are widely used to handle many difficult tasks, such as image classification and malware detection, and achieve outstanding performance. However, recent studies on adversarial examples, which have maliciously undetectable perturbations added to their original samples that are indistinguishable by human eyes but mislead the machine learning approaches, show that machine learning models are vulnerable to security attacks. Though various adversarial retraining techniques have been developed in the past few years, none of them is scalable. In this paper, we propose a new iterative adversarial retraining approach to robustify the model and to reduce the effectiveness of adversarial inputs on DNN models. The proposed method retrains the model with both Gaussian noise augmentation and adversarial generation techniques for better generalization. Furthermore, the ensemble model is utilized during the testing phase in order to increase the robust test accuracy. The results from our extensive experiments demonstrate that the proposed approach increases the robustness of the DNN model against various adversarial attacks, specifically, fast gradient sign attack, Carlini and Wagner (C&W) attack, Projected Gradient Descent (PGD) attack, and DeepFool attack. To be precise, the robust classifier obtained by our proposed approach can maintain a performance accuracy of 99% on average on the standard test set. Moreover, we empirically evaluate the runtime of two of the most effective adversarial attacks, i.e., C&W attack and BIM attack, to find that the C&W attack can utilize GPU for faster adversarial example generation than the BIM attack can. For this reason, we further develop a parallel implementation of the proposed approach. This parallel implementation makes the proposed approach scalable for large datasets and complex models.

     
    more » « less
  5. Powerful adversarial attack methods are vital for understanding how to construct robust deep neural networks (DNNs) and thoroughly testing defense techniques. In this project, we propose a black-box adversarial attack algorithm that can defeat both vanilla DNNs and those generated by various defense techniques developed recently. Instead of searching for an “optimal” adversarial example for a benign input to a targeted DNN, our algorithm finds a probability density distribution over a small region centered around the input, such that a sample drawn from this distribution is likely an adversarial example, without the need of accessing the DNN’s internal layers or weights. Our approach is universal as it can successfully attack different neural networks by a single algorithm. It is also strong; according to the testing against 2 vanilla DNNs and 13 defended ones, it outperforms state-of-the-art black-box or white-box attack methods for most test cases. Additionally, our results reveal that adversarial training remains one of the best defense techniques, and the adversarial examples are not as transferable across defended DNNs as them across vanilla DNNs. 
    more » « less