skip to main content


Title: Dual oxidase/oxygenase reactivity and resonance Raman spectra of {Cu 3 O 2 } moiety with perfluoro- t -butoxide ligands
A Cu( i ) fully fluorinated O-donor monodentate alkoxide complex, K[Cu(OC 4 F 9 ) 2 ], was previously shown to form a trinuclear copper–dioxygen species with a {Cu 3 (μ 3 -O) 2 } core, T OC4F9 , upon reactivity with O 2 at low temperature. Herein is reported a significantly expanded kinetic and mechanistic study of T OC4F9 formation using stopped-flow spectroscopy. The T OC4F9 complex performs catalytic oxidase conversion of hydroquinone (H 2 Q) to benzoquinone (Q). T OC4F9 also demonstrated hydroxylation of 2,4-di- tert -butylphenolate (DBP) to catecholate, making T OC4F9 the first trinuclear species to perform tyrosinase (both monooxygenase and oxidase) chemistry. Resonance Raman spectra were also obtained for T OC4F9 , to our knowledge, the first such spectra for any T species. The mechanism and substrate reactivity of T OC4F9 are compared to those of its bidentate counterpart, T pinF , formed from K[Cu(pin F )(PR 3 )]. The monodentate derivative has both faster initial formation and more diverse substrate reactivity.  more » « less
Award ID(s):
1800313
NSF-PAR ID:
10097316
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
48
Issue:
20
ISSN:
1477-9226
Page Range / eLocation ID:
6899 to 6909
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Investigation of Cu–O 2 oxidation reactivity is important in biological and anthropogenic chemistry. Zeolites are one of the most promising Cu/O based oxidation catalysts for development of industrial-scale CH 4 to CH 3 OH conversion. Their oxidation mechanisms are not well understood, however, highlighting the importance of the investigation of molecular Cu( i )–O 2 reactivity with O-donor complexes. Herein, we give an overview of the synthesis, structural properties, and O 2 reactivity of three different series of O-donor fluorinated Cu( i ) alkoxides: K[Cu(OR) 2 ], [(Ph 3 P)Cu(μ-OR) 2 Cu(PPh 3 )], and K[(R 3 P)Cu(pin F )], in which OR = fluorinated monodentate alkoxide ligands and pin F = perfluoropinacolate. This breadth allowed for the exploration of the influence of the denticity of the ligand, coordination number, the presence of phosphine, and K⋯F/O interactions on their O 2 reactivity. K⋯F/O interactions were required to activate O 2 in the monodentate-ligand-only family, whereas these connections did not affect O 2 activation in the bidentate complexes, potentially due to the presence of phosphine. Both families formed trisanionic, trinuclear cores of the form {Cu 3 (μ 3 -O) 2 } 3− . Intramolecular and intermolecular substrate oxidation were also explored and found to be influenced by the fluorinated ligand. Namely, {Cu 3 (μ 3 -O) 2 } 3− from K[Cu(OR) 2 ] could perform both monooxygenase reactivity and oxidase catalysis, whereas those from K[(R 3 P)Cu(pin F )] could only perform oxidase catalysis. 
    more » « less
  2. Abstract

    Coupled dinuclear copper oxygen cores (Cu2O2) featured in type III copper proteins (hemocyanin, tyrosinase, catechol oxidase) are vital for O2transport and substrate oxidation in many organisms.μ‐1,2‐cisperoxido dicopper cores (CP) have been proposed as key structures in the early stages of O2binding in these proteins; their reversible isomerization to other Cu2O2cores are directly relevant to enzyme function. Despite the relevance of such species to type III copper proteins and the broader interest in the properties and reactivity of bimetallicCPcores in biological and synthetic systems, the properties and reactivity ofCPCu2O2species remain largely unexplored. Herein, we report the reversible interconversion ofμ‐1,2‐transperoxido (TP) andCPdicopper cores. CaIImediates this process by reversible binding at the Cu2O2core, highlighting the unique capability for metal‐ion binding events to stabilize novel reactive fragments and control O2activation in biomimetic systems.

     
    more » « less
  3. Abstract

    Coupled dinuclear copper oxygen cores (Cu2O2) featured in type III copper proteins (hemocyanin, tyrosinase, catechol oxidase) are vital for O2transport and substrate oxidation in many organisms.μ‐1,2‐cisperoxido dicopper cores (CP) have been proposed as key structures in the early stages of O2binding in these proteins; their reversible isomerization to other Cu2O2cores are directly relevant to enzyme function. Despite the relevance of such species to type III copper proteins and the broader interest in the properties and reactivity of bimetallicCPcores in biological and synthetic systems, the properties and reactivity ofCPCu2O2species remain largely unexplored. Herein, we report the reversible interconversion ofμ‐1,2‐transperoxido (TP) andCPdicopper cores. CaIImediates this process by reversible binding at the Cu2O2core, highlighting the unique capability for metal‐ion binding events to stabilize novel reactive fragments and control O2activation in biomimetic systems.

     
    more » « less
  4. The activation of O 2 at thiolate–ligated iron( ii ) sites is essential to the function of numerous metalloenzymes and synthetic catalysts. Iron–thiolate bonds in the active sites of nonheme iron enzymes arise from either coordination of an endogenous cysteinate residue or binding of a deprotonated thiol-containing substrate. Examples of the latter include sulfoxide synthases, such as EgtB and OvoA, that utilize O 2 to catalyze tandem S–C bond formation and S -oxygenation steps in thiohistidine biosyntheses. We recently reported the preparation of two mononuclear nonheme iron–thiolate complexes (1 and 2) that serve as structural active-site models of substrate-bound EgtB and OvoA ( Dalton Trans. 2020, 49 , 17745–17757). These models feature monodentate thiolate ligands and tripodal N 4 ligands with mixed pyridyl/imidazolyl donors. Here, we describe the reactivity of 1 and 2 with O 2 at low temperatures to give metastable intermediates (3 and 4, respectively). Characterization with multiple spectroscopic techniques (UV-vis absorption, NMR, variable-field and -temperature Mössbauer, and resonance Raman) revealed that these intermediates are thiolate-ligated iron( iii ) dimers with a bridging oxo ligand derived from the four-electron reduction of O 2 . Structural models of 3 and 4 consistent with the experimental data were generated via density functional theory (DFT) calculations. The combined experimental and computational results illuminate the geometric and electronic origins of the unique spectral features of diiron( iii )-μ-oxo complexes with thiolate ligands, and the spectroscopic signatures of 3 and 4 are compared to those of closely-related diiron( iii )-μ-peroxo species. Collectively, these results will assist in the identification of intermediates that appear on the O 2 reaction landscapes of iron–thiolate species in both biological and synthetic environments. 
    more » « less
  5. There is considerable interest in MnOH x moieties, particularly in the stepwise changes in those O–H bonds in tandem with Mn oxidation state changes. The reactivity of aquo-derived ligands, {MOH x }, is also heavily influenced by the electronic character of the other ligands. Despite the prevalence of oxygen coordination in biological systems, preparation of mononuclear Mn complexes of this type with all O-donors is rare. Herein, we report several Mn complexes with perfluoropinacolate (pin F ) 2− including the first example of a crystallographically characterized mononuclear {Mn( iii )OH} with all O-donors, K 2 [Mn(OH)(pin F ) 2 ], 3. Complex 3 is prepared via deprotonation of K[Mn(OH 2 )(pin F ) 2 ], 1, the p K a of which is estimated to be 18.3 ± 0.3. Cyclic voltammetry reveals quasi-reversible redox behavior for both 1 and 3 with an unusually large Δ E p , assigned to the Mn( iii / ii ) couple. Using the Bordwell method, the bond dissociation free energy (BDFE) of the O–H bond in {Mn( ii )–OH 2 } is estimated to be 67–70 kcal mol −1 . Complex 3 abstracts H-atoms from 1,2-diphenylhydrazine, 2,4,6-TTBP, and TEMPOH, the latter of which supports a PCET mechanism. Under basic conditions in air, the synthesis of 1 results in K 2 [Mn(OAc)(pin F ) 2 ], 2, proposed to result from the oxidation of Et 2 O to EtOAc by a reactive Mn species, followed by ester hydrolysis. Complex 3 alone does not react with Et 2 O, but addition of O 2 at low temperature effects the formation of a new chromophore proposed to be a Mn( iv ) species. The related complexes K(18C6)[Mn( iii )(pin F ) 2 ], 4, and (Me 4 N) 2 [Mn( ii )(pin F ) 2 ], 5, have also been prepared and their properties discussed in relation to complexes 1–3. 
    more » « less