Nucleophilic Addition to Singlet Diradicals: Heterosymmetric Diradicals
- Award ID(s):
- 1764235
- PAR ID:
- 10097412
- Date Published:
- Journal Name:
- The Journal of Organic Chemistry
- Volume:
- 83
- Issue:
- 20
- ISSN:
- 0022-3263
- Page Range / eLocation ID:
- 12397 to 12403
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Theoretical simulations are critical to analyze and interpret the x-ray absorption spectrum of transient open-shell species. In this work, we propose a model of the many-body core-excited states of symmetric diradicals. We apply this model to analyze the carbon K-edge transitions of o-, m-, and p-benzyne, three organic diradicals with diverse and unusual electronic structures. The predictions of our model are compared with high-level multireference computations of the K-edge spectrum of the benzynes obtained with the driven similarity renormalization group truncated to third order. Our model shows the importance of a many-body treatment of the core-excited states of the benzynes and provides a theoretical framework to understand which properties of the ground state of these diradicals can be extracted from their x-ray spectrum.more » « less
-
Abstract The electronic, optical, and solid state properties of a series of monoradicals, anions and cations obtained from starting neutral diradicals have been studied. Diradicals based ons‐indacene and indenoacenes, with benzothiophenes fused and in different orientations, feature a varying degree of diradical character in the neutral state, which is here related with the properties of the radical redox forms. The analysis of their optical features in the polymethine monoradicals has been carried out in the framework of the molecular orbital and valence bond theories. Electronic UV‐Vis‐NIR absorption, X‐ray solid‐state diffraction and quantum chemical calculations have been carried out. Studies of the different positive‐/negative‐charged species, both residing in the same skeletalπ‐conjugated backbone, are rare for organic molecules. The key factor for the dual stabilization is the presence of the starting diradical character that enables to indistinctively accommodate a pseudo‐hole and a pseudo‐electron defect with certainly small reorganization energies for ambipolar charge transport.more » « less
An official website of the United States government

