skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Orbital Nature of Carboionic Monoradicals Made from Diradicals
Abstract The electronic, optical, and solid state properties of a series of monoradicals, anions and cations obtained from starting neutral diradicals have been studied. Diradicals based ons‐indacene and indenoacenes, with benzothiophenes fused and in different orientations, feature a varying degree of diradical character in the neutral state, which is here related with the properties of the radical redox forms. The analysis of their optical features in the polymethine monoradicals has been carried out in the framework of the molecular orbital and valence bond theories. Electronic UV‐Vis‐NIR absorption, X‐ray solid‐state diffraction and quantum chemical calculations have been carried out. Studies of the different positive‐/negative‐charged species, both residing in the same skeletalπ‐conjugated backbone, are rare for organic molecules. The key factor for the dual stabilization is the presence of the starting diradical character that enables to indistinctively accommodate a pseudo‐hole and a pseudo‐electron defect with certainly small reorganization energies for ambipolar charge transport.  more » « less
Award ID(s):
2003411 1954389
PAR ID:
10412870
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
29
Issue:
27
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The literature has seen a large increase in the number of new carbon‐based organic diradicals/diradicaloids in recent years. While a plethora of new and exciting structures have been created, there seemingly is a gap in knowledge of what fundamental electronic parameters are in play and thus how to rationally manipulate said parameters to “fine tune” the resultant diradical properties. Since 2014, the Haley group has been exploring methods to systematically alter the diradical character and the singlet‐triplet energy gap in said class of molecules. Our entrance into organic diradicals began with the π‐expansion of the benzene core of indeno[1,2‐b]fluorene up to the anthracene core of diindenoanthracene (DIAn). DIAn possessed moderate diradical character (y =0.62) with a surprising level of stability (more than 2 months in solution). From this molecular blueprint for producing stable diradicals, the Haley lab has investigated how to fine tune diradical properties via structural changes in two key positions: (a) the length of the acene core and (b) thoughtful exchange of the outer arenes. With this strategy at our disposal, we can make large scale changes to the diradical character index and singlet‐triplet energy gap through changing the core length, and these properties can be further fine‐tuned in a series of closely related diradicals by careful exchange of the outer arenes utilizing the straightforward methods described in this mini‐review. 
    more » « less
  2. Abstract Organic semiconductors with high-spin ground states are fascinating because they could enable fundamental understanding on the spin-related phenomenon in light element and provide opportunities for organic magnetic and quantum materials. Although high-spin ground states have been observed in some quinoidal type small molecules or doped organic semiconductors, semiconducting polymers with high-spin at their neutral ground state are rarely reported. Here we report three high-mobility semiconducting polymers with different spin ground states. We show that polymer building blocks with small singlet-triplet energy gap (Δ E S-T ) could enable small Δ E S-T gap and increase the diradical character in copolymers. We demonstrate that the electronic structure, spin density, and solid-state interchain interactions in the high-spin polymers are crucial for their ground states. Polymers with a triplet ground state ( S  = 1) could exhibit doublet ( S  = 1/2) behavior due to different spin distributions and solid-state interchain spin-spin interactions. Besides, these polymers showed outstanding charge transport properties with high hole/electron mobilities and can be both n- and p-doped with superior conductivities. Our results demonstrate a rational approach to obtain high-mobility semiconducting polymers with different spin ground states. 
    more » « less
  3. Abstract Most organic semiconductors have closed-shell electronic structures, however, studies have revealed open-shell character emanating from design paradigms such as narrowing the bandgap and controlling the quinoidal-aromatic resonance of the π-system. A fundamental challenge is understanding and identifying the molecular and electronic basis for the transition from a closed- to open-shell electronic structure and connecting the physicochemical properties with (opto)electronic functionality. Here, we report donor-acceptor organic semiconductors comprised of diketopyrrolopyrrole and naphthobisthiadiazole acceptors and various electron-rich donors commonly utilized in constructing high-performance organic semiconductors. Nuclear magnetic resonance, electron spin resonance, magnetic susceptibility measurements, single-crystal X-ray studies, and computational investigations connect the bandgap, π-extension, structural, and electronic features with the emergence of various degrees of diradical character. This work systematically demonstrates the widespread diradical character in the classical donor-acceptor organic semiconductors and provides distinctive insights into their ground state structure-property relationship. 
    more » « less
  4. The recently discovered Neorhodopsin (NeoR) exhibits absorption and emission maxima in the near-infrared spectral region, which together with the high fluorescence quantum yield makes it an attractive retinal protein for optogenetic applications. The unique optical properties can be rationalized by a theoretical model that predicts a high charge transfer character in the electronic ground state (S0) which is otherwise typical of the excited state S1 in canonical retinal proteins. The present study sets out to assess the electronic structure of the NeoR chromophore by resonance Raman (RR) spectroscopy since frequencies and relative intensities of RR bands are controlled by the ground and excited state’s properties. The RR spectra of NeoR differ dramatically from those of canonical rhodopsins but can be reliably reproduced by the calculations carried out within two different structural models. The remarkable agreement between the experimental and calculated spectra confirms the consistency and robustness of the theoretical approach. 
    more » « less
  5. Abstract We describe effective development of the highly diastereoselective synthesis of double helical tetraamine 2-H2-C2 and propose a mechanism for its formation. The resolution of 2-H2-C2 is facilitated by a high racemization barrier of 43 kcal mol–1 and it is implemented via either a chiral auxiliary or preparative supercritical fluid chromatography. This enables preparation of the first high-spin neutral diradical, with spin density delocalized within an enantiomeric double helical π-system. The presence of two effective 3-electron C–N bonds in the diradical leads to: (1) the triplet (S = 1) high-spin ground state with a singlet-triplet energy gap of 0.4 kcal mol–1 and (2) the long half-life of up to 6 days in 2-MeTHF at room temperature. The diradical possesses a racemization barrier of at least 26 kcal mol–1 in 2-MeTHF at 293 K and chiroptical properties, with an absorption anisotropy factor |g| ≈ 0.005 at 548 nm. These unique magnetic and optical properties of our diradical form the basis for the development of next-generation spintronic devices. 1 Introduction 2 Synthesis and Resolution of the C 2-Symmetric Double Helical Tetraamine 2-H2-C 2 3 Synthesis and Characterization of Neutral High-Spin Aminyl Diradical 22• -C 2 4 Conclusion 
    more » « less