skip to main content


Title: A possible Adélie penguin sub-colony on fast ice by Cape Crozier, Antarctica
Adélie penguins are renowned for their natal philopatry on land-based colonies, requiring small pebbles to be used for nests. We report on an opportunistic observation via aerial survey, where hundreds of Adélie penguins were documented displaying nesting behaviours on fast ice ~3 km off the coast of Cape Crozier, which is one of the largest colonies in the world. We counted 426 Adélie penguins engaging in behaviours of pair formation, spacing similarly to normal nest distributions and lying in divots in the ice that looked like nests. On our first visit, it was noticed that the guano stain was bright pink, consistent with krill consumption, but had shifted to green over the course of ~2 weeks, indicating that the birds were fasting (a behaviour consistent with egg incubation). However, eggs were not observed. We posit four hypotheses that may explain the proximate causes of this behaviour and caution against future high-resolution satellite imagery interpretation due to the potential for confusing ice-nesting Adélie penguins with the presence of emperor penguin colonies.  more » « less
Award ID(s):
1744989
NSF-PAR ID:
10097452
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Antarctic Science
ISSN:
0954-1020
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Group-size variation is common in colonially breeding species, including seabirds, whose breeding colonies can vary in size by several orders of magnitude. Seabirds are some of the most threatened marine taxa and understanding the drivers of colony size variation is more important than ever. Reproductive success is an important demographic parameter that can impact colony size, and it varies in association with a number of factors, including nesting habitat quality. Within colonies, seabirds often aggregate into distinct groups or subcolonies that may vary in quality. We used data from two colonies of Adélie penguins 73 km apart on Ross Island, Antarctica, one large and one small to investigate (1) How subcolony habitat characteristics influence reproductive success and (2) How these relationships differ at a small (Cape Royds) and large (Cape Crozier) colony with different terrain characteristics. Subcolonies were characterized using terrain attributes (elevation, slope aspect, slope steepness, wind shelter, flow accumulation), as well group characteristics (area/size, perimeter-to-area ratio, and proximity to nest predators). Reproductive success was higher and less variable at the larger colony while subcolony characteristics explained more of the variance in reproductive success at the small colony. The most important variable influencing subcolony quality at both colonies was perimeter-to-area ratio, likely reflecting the importance of nest predation by south polar skuas along subcolony edges. The small colony contained a higher proportion of edge nests thus higher potential impact from skua nest predation. Stochastic environmental events may facilitate smaller colonies becoming “trapped” by nest predation: a rapid decline in the number of breeding individuals may increase the proportion of edge nests, leading to higher relative nest predation and hindering population recovery. Several terrain covariates were retained in the final models but which variables, the shapes of the relationships, and importance varied between colonies. 
    more » « less
  2. We evaluated annual and regional variation in the dietary niche of Pygoscelis penguins including the sea ice-obligate Adélie penguin ( Pygoscelis adeliae ), and sea ice-intolerant chinstrap ( Pygoscelis antarcticus ) and gentoo ( Pygoscelis papua ) penguins, three species that nest throughout the western Antarctic Peninsula (AP) to test the sea ice trophic interaction hypothesis , which posits that penguin breeding populations with divergent trends, i.e., declining or increasing, are reliant on differing food webs. Our study relies on values of naturally occurring carbon ( 13 C/ 12 C, δ 13 C) and nitrogen ( 15 N/ 14 N, δ 15 N) stable isotopes as integrated proxies of penguin food webs measured over three years at three different breeding colonies. At Anvers Island in the north, where reductions in sea ice and changes in breeding population trends among sympatric sea ice-obligate (Adélie) and sea ice-intolerant (chinstrap and gentoo) penguins have been most notable, our analyses show that all three species of Pygoscelis penguins became more similar isotopically over the reproductive period. By late chick-rearing at Anvers Island, crèched chicks at 5-weeks-old for all species occupied similar trophic positions. Isotopic mixing models indicated that the proportions of prey provisioned by adult penguins to 5-week-old chicks at Anvers Island were generally similar across species within years, consisting primarily of Antarctic krill ( Euphausia superba ). Crèched Adélie chicks had higher δ 13 C and δ 15 N values at Avian and Charcot Islands, southern breeding colonies where sea ice is more prominent and populations of Adélie penguins have increased or remain stable. Trophic position increased with latitude, while the proportions of prey provisioned by Adélie penguin adults to chicks at southern breeding colonies included species typical of high Antarctic marine food webs, especially crystal krill ( Euphausia crystallorophias ). A Bayesian metric for dietary niche width, standard ellipse area (SEA-B), indicated that Pygoscelis penguins with greater population changes in the north had more variability in dietary niche width than stable populations further south. Our results lend insight on marine food web drivers of Pygoscelis penguin reproduction at the regional scale and question the long-standing paradigm that Antarctic krill are the only food web component critical to penguin reproductive survival in this region of the Southern Ocean. 
    more » « less
  3. Abstract

    Despite many studies on Adélie penguin breeding phenology, understanding the drivers of clutch initiation dates (CIDs, egg 1 lay date) is limited or lacks consensus. Here, we investigated Adélie penguin CIDs over 25 years (1991–2016) on two neighboring islands, Torgersen and Humble (<1 km apart), in a rapidly warming region near Palmer Station, Antarctica. We found that sea ice was the primary large‐scale driver of CIDs and precipitation was a secondary small‐scale driver that fine‐tunes CID to island‐specific nesting habitat geomorphology. In general, CIDs were earlier (later) when the spring sea ice retreat was earlier (later) and when the preceding annual ice season was shorter (longer). Island‐specific effects related to precipitation and island geomorphology caused greater snow accumulation and delayed CIDs by ~2 days on Torgersen compared to Humble Island. When CIDs on the islands were similar, conditions were mild with less snow across breeding sites. At Torgersen Island, the negative relationship between CID and breeding success highlights detrimental effects of delayed breeding and/or snow on penguin fitness. Past phenological studies reported a relationship between air temperature and CID, assumed to be related to precipitation, but we found air temperature was more highly correlated to sea ice, revealing a misinterpretation of temperature effects. Finally, contrasting trends in CIDs based on temporal shifts in regional sea ice patterns revealed trends toward earlier CIDs (4–6 day advance) from 1979 to 2009 as the annual ice season shortened, and later CIDs (7–10 day delay) from 2010 to 2016 as the annual ice season lengthened. Adélie penguins tracked environmental conditions with flexible breeding phenology, but their life history remains vulnerable to subpolar weather conditions that can delay CIDs and decrease breeding success, especially on landscapes where geomorphology facilitates snow accumulation.

     
    more » « less
  4. Abstract The Ross Sea (Antarctica) is one of the most productive marine ecosystems in the Southern Ocean and supports nearly one million breeding pairs of Adélie penguins (Pygoscelis adeliae) annually. There also is a well-preserved record of abandoned penguin colonies that date from before the Last Glacial Maximum (>45,000 14C yr B.P.) through the Holocene. Cape Irizar is a rocky cape located just south of the Drygalski Ice Tongue on the Scott Coast. In January 2016, several abandoned Adélie penguin sites and abundant surface remains of penguin bones, feathers, and carcasses that appeared to be fresh were being exposed by melting snow and were sampled for radiocarbon analysis. The results indicate the “fresh” remains are actually ancient and that three periods of occupation by Adélie penguins are represented beginning ca. 5000 calibrated calendar (cal.) yr B.P., with the last occupation ending by ca. 800 cal. yr B.P. The presence of fresh-appearing remains on the surface that are actually ancient in age suggests that only recently has snowmelt exposed previously frozen carcasses and other remains for the first time in ∼800 yr, allowing them to decay and appear fresh. Recent warming trends and historical satellite imagery (Landsat) showing decreasing snow cover on the cape since 2013 support this hypothesis. Increased δ13C values of penguin bone collagen further indicate a period of enhanced marine productivity during the penguin “optimum”, a warm period at 4000–2000 cal. yr B.P., perhaps related to an expansion of the Terra Nova Bay polynya with calving events of the Drygalski Ice Tongue. 
    more » « less
  5. Abstract

    Understanding the scales at which environmental variability affects populations is critical for projecting population dynamics and species distributions in rapidly changing environments. Here we used a multilevel Bayesian analysis of range‐wide survey data for Adélie penguins to characterize multidecadal and annual effects of sea ice on population growth. We found that mean sea ice concentration at breeding colonies (i.e., “prevailing” environmental conditions) had robust nonlinear effects on multidecadal population trends and explained over 85% of the variance in mean population growth rates among sites. In contrast, despite considerable year‐to‐year fluctuations in abundance at most breeding colonies, annual sea ice fluctuations often explained less than 10% of the temporal variance in population growth rates. Our study provides an understanding of the spatially and temporally dynamic environmental factors that define the range limits of Adélie penguins, further establishing this iconic marine predator as a true sea ice obligate and providing a firm basis for projection under scenarios of future climate change. Yet, given the weak effects of annual sea ice relative to the large unexplained variance in year‐to‐year growth rates, the ability to generate useful short‐term forecasts of Adélie penguin breeding abundance will be extremely limited. Our approach provides a powerful framework for linking short‐ and longer term population processes to environmental conditions that can be applied to any species, facilitating a richer understanding of ecological predictability and sensitivity to global change.

     
    more » « less