Predators impact preyscapes (3-D distribution of forage species) by consuming prey according to their abilities or by altering prey behavior as they avoid being consumed. We elucidate prey (Antarctic silverfish[
- Award ID(s):
- 1744884
- Publication Date:
- NSF-PAR ID:
- 10357032
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 8
- ISSN:
- 2296-7745
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Pleuragramma antarctica ] and crystal krill[Euphausia chrystallorophias ]) responses to predation associated with the marginal ice zone (MIZ) of the McMurdo Sound, Antarctica, polynya. Prey abundance and habitat was sampled across a 30 × 15 km area by remotely-operated vehicle, and included locations that were accessible (ice edge) or inaccessible (solid fast ice) to air-breathing predators. Prey and habitat sampling coincided with bio-logging of Adélie penguins and observations of other air-breathing predators (penguins, seals, and whales), all of which were competing for the same prey. Adélie penguins dived deeper, and more frequently, near the ice edge. Lowered abundance of krill at the ice edge indicated they were depleted or were responding to increased predation and/or higher light levels along the ice edge. Penguin diet shifted increasingly to silverfish from krill during sampling, and was correlated with the arrival of krill-eating whales. Behaviorally-mediated, high trophic transfer characterizes the McMurdo Sound MIZ, and likely other MIZs, warranting more specific consideration in food web models and conservation efforts. -
Abstract The Ross Sea (Antarctica) is one of the most productive marine ecosystems in the Southern Ocean and supports nearly one million breeding pairs of Adélie penguins (Pygoscelis adeliae) annually. There also is a well-preserved record of abandoned penguin colonies that date from before the Last Glacial Maximum (>45,000 14C yr B.P.) through the Holocene. Cape Irizar is a rocky cape located just south of the Drygalski Ice Tongue on the Scott Coast. In January 2016, several abandoned Adélie penguin sites and abundant surface remains of penguin bones, feathers, and carcasses that appeared to be fresh were being exposed by melting snow and were sampled for radiocarbon analysis. The results indicate the “fresh” remains are actually ancient and that three periods of occupation by Adélie penguins are represented beginning ca. 5000 calibrated calendar (cal.) yr B.P., with the last occupation ending by ca. 800 cal. yr B.P. The presence of fresh-appearing remains on the surface that are actually ancient in age suggests that only recently has snowmelt exposed previously frozen carcasses and other remains for the first time in ∼800 yr, allowing them to decay and appear fresh. Recent warming trends and historical satellite imagery (Landsat) showing decreasing snow covermore »
-
Abstract Discovering the predictors of foraging locations can be challenging, and is often the critical missing piece for interpreting the ecological significance of observed movement patterns of predators. This is especially true in dynamic coastal marine systems, where planktonic food resources are diffuse and must be either physically or biologically concentrated to support upper trophic levels. In the Western Antarctic Peninsula, recent climate change has created new foraging sympatry between Adélie (
Pygoscelis adeliae ) and gentoo (P. papua ) penguins in a known biological hotspot near Palmer Deep canyon. We used this recent sympatry as an opportunity to investigate how dynamic local oceanographic features affect aspects of the foraging ecology of these two species. Simulated particle trajectories from measured surface currents were used to investigate the co-occurrence of convergent ocean features and penguin foraging locations. Adélie penguin diving activity was restricted to the upper mixed layer, while gentoo penguins often foraged much deeper than the mixed layer, suggesting that Adélie penguins may be more responsive to dynamic surface convergent features compared to gentoo penguins. We found that, despite large differences in diving and foraging behavior, both shallow-diving Adélie and deeper-diving gentoo penguins strongly selected for surface convergent features. Furthermore, there was nomore » -
We examined mercury (Hg) accumulation in juvenile and adult subpopulations of Antarctic krill (Euphausia superba) collected west of the Antarctic Peninsula. Samples were collected along a northern cross-shelf transect beginning near Anvers Island and farther south near the sea ice edge in the austral summers of 2011, 2013, 2014, and 2015. Regardless of geographical position, mean concentrations of total Hg and methylmercury (MeHg), the form of Hg that biomagnifies in marine food webs, were significantly higher in juvenile than adult krill in all years. In 2013, juvenile Antarctic krill collected along the coast near Anvers Island had significantly higher MeHg concentrations than krill collected farther offshore, and in 2013 and 2014, coastal juvenile krill exhibited some of the highest MeHg concentrations of all subpopulations sampled. Across all sampling years, collection in northern (sea ice-free) or southern (sea ice edge) transects did not affect MeHg concentrations of juvenile or adult krill, suggesting similar levels and routes of MeHg exposure across the latitudes sampled. Developmental stage, feeding near the coast, and annual variations in sea ice-driven primary and export production were identified as potentially important factors leading to greater MeHg accumulation in juvenile than adult krill. Krill-dependent predators feeding primarily on juvenilesmore »
-
Abstract Quantifying food intake in wild animals is crucial to many ecological and evolutionary questions, yet it can be very challenging, especially in the marine environment. Because foraging behavior can be inferred from dive recordings in many marine creatures, we hypothesized that specific behavioral dive variables can indicate food intake. To test this hypothesis, we attached time-depth recorders to breeding Adélie penguins also implanted with RFID tags that crossed a weighbridge as they traveled to and from the ocean to feed their chicks. The weighbridge reported how much mass the penguin had gained during a foraging trip. The variables that explained a significant amount of the change in body mass while at sea were the number of foraging dives per hour (46%) and the number of undulations per hour (12%). Most importantly, every increment of 1 in the rate of foraging dives per hour equated to a penguin gaining an average 170 g of mass, over the course of a 6–60 h foraging trip. These results add to a growing understanding that different metrics of foraging success are likely appropriate for different species, and that assessing the types and frequencies of dives using time-depth recorders can yield valuable insights.