skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long‐Period Long‐Duration Events Detected by the IRIS Community Wavefield Demonstration Experiment in Oklahoma: Tremor or Train Signals?
Award ID(s):
1818611
PAR ID:
10097524
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Seismological Research Letters
ISSN:
0895-0695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is well known that the Korteweg-deVries(KdV) equation and its generalizations serve as modulation equations for traveling wave solutions to generic Fermi-Pasta-Ulam-Tsingou (FPUT) lattices. Explicit approximation estimates and other such results have been proved in this case. However, situ- ations in which the defocusing modified KdV (mKdV) equation is expected to be the modulation equation have been much less studied. As seen in numerical experiments, the kink solution of the mKdV seems essential in understanding the -FPUT recurrence. In this paper, we derive explicit approximation re- sults for solutions of the FPUT using the mKdV as a modulation equation. In contrast to previous work, our estimates allow for solutions to be non-localized as to allow approximate kink solutions. These results allow us to conclude meta-stability results of kink-like solutions of the FPUT. 
    more » « less
  2. Abstract Perception results from the interplay of sensory input and prior knowledge. Despite behavioral evidence that long-term priors powerfully shape perception, the neural mechanisms underlying these interactions remain poorly understood. We obtained direct cortical recordings in neurosurgical patients as they viewed ambiguous images that elicit constant perceptual switching. We observe top-down influences from the temporal to occipital cortex, during the preferred percept that is congruent with the long-term prior. By contrast, stronger feedforward drive is observed during the non-preferred percept, consistent with a prediction error signal. A computational model based on hierarchical predictive coding and attractor networks reproduces all key experimental findings. These results suggest a pattern of large-scale information flow change underlying long-term priors’ influence on perception and provide constraints on theories about long-term priors’ influence on perception. 
    more » « less