skip to main content


This content will become publicly available on October 1, 2024

Title: Long-time approximations of small-amplitude, long-wavelength FPUT solutions
It is well known that the Korteweg-deVries(KdV) equation and its generalizations serve as modulation equations for traveling wave solutions to generic Fermi-Pasta-Ulam-Tsingou (FPUT) lattices. Explicit approximation estimates and other such results have been proved in this case. However, situ- ations in which the defocusing modified KdV (mKdV) equation is expected to be the modulation equation have been much less studied. As seen in numerical experiments, the kink solution of the mKdV seems essential in understanding the -FPUT recurrence. In this paper, we derive explicit approximation re- sults for solutions of the FPUT using the mKdV as a modulation equation. In contrast to previous work, our estimates allow for solutions to be non-localized as to allow approximate kink solutions. These results allow us to conclude meta-stability results of kink-like solutions of the FPUT.  more » « less
Award ID(s):
1813384
NSF-PAR ID:
10478251
Author(s) / Creator(s):
;
Corporate Creator(s):
Publisher / Repository:
AIMS
Date Published:
Journal Name:
Discrete and Continuous Dynamical Systems
Volume:
0
Issue:
0
ISSN:
1078-0947
Page Range / eLocation ID:
0 to 0
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We consider large-scale dynamics of non-equilibrium dense soliton gas for the Korteweg–de Vries (KdV) equation in the special “condensate” limit. We prove that in this limit the integro-differential kinetic equation for the spectral density of states reduces to theN-phase KdV–Whitham modulation equations derived by Flaschka et al. (Commun Pure Appl Math 33(6):739–784, 1980) and Lax and Levermore (Commun Pure Appl Math 36(5):571–593, 1983). We consider Riemann problems for soliton condensates and construct explicit solutions of the kinetic equation describing generalized rarefaction and dispersive shock waves. We then present numerical results for “diluted” soliton condensates exhibiting rich incoherent behaviors associated with integrable turbulence.

     
    more » « less
  2. A new type of wave–mean flow interaction is identified and studied in which a small-amplitude, linear, dispersive modulated wave propagates through an evolving, nonlinear, large-scale fluid state such as an expansion (rarefaction) wave or a dispersive shock wave (undular bore). The Korteweg–de Vries (KdV) equation is considered as a prototypical example of dynamic wavepacket–mean flow interaction. Modulation equations are derived for the coupling between linear wave modulations and a nonlinear mean flow. These equations admit a particular class of solutions that describe the transmission or trapping of a linear wavepacket by an unsteady hydrodynamic state. Two adiabatic invariants of motion are identified that determine the transmission, trapping conditions and show that wavepackets incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves exhibit so-called hydrodynamic reciprocity recently described in Maiden et al.  ( Phys. Rev. Lett. , vol. 120, 2018, 144101) in the context of hydrodynamic soliton tunnelling. The modulation theory results are in excellent agreement with direct numerical simulations of full KdV dynamics. The integrability of the KdV equation is not invoked so these results can be extended to other nonlinear dispersive fluid mechanic models. 
    more » « less
  3. Abstract The inverse scattering transform allows explicit construction of solutions to many physically significant nonlinear wave equations. Notably, this method can be extended to fractional nonlinear evolution equations characterized by anomalous dispersion using completeness of suitable eigenfunctions of the associated linear scattering problem. In anomalous diffusion, the mean squared displacement is proportional to t α , α > 0, while in anomalous dispersion, the speed of localized waves is proportional to A α , where A is the amplitude of the wave. Fractional extensions of the modified Korteweg–deVries (mKdV), sine-Gordon (sineG) and sinh-Gordon (sinhG) and associated hierarchies are obtained. Using symmetries present in the linear scattering problem, these equations can be connected with a scalar family of nonlinear evolution equations of which fractional mKdV (fmKdV), fractional sineG (fsineG), and fractional sinhG (fsinhG) are special cases. Completeness of solutions to the scalar problem is obtained and, from this, the nonlinear evolution equation is characterized in terms of a spectral expansion. In particular, fmKdV, fsineG, and fsinhG are explicitly written. One-soliton solutions are derived for fmKdV and fsineG using the inverse scattering transform and these solitons are shown to exhibit anomalous dispersion. 
    more » « less
  4. This paper develops a finite approximation approach to find a non-smooth solution of an integral equation of the second kind. The equation solutions with non-smooth kernel having a non-smooth solution have never been studied before. Such equations arise frequently when modeling stochastic systems. We construct a Banach space of (right-continuous) distribution functions and reformulate the problem into an operator equation. We provide general necessary and sufficient conditions that allow us to show convergence of the approximation approach developed in this paper. We then provide two specific choices of approximation sequences and show that the properties of these sequences are sufficient to generate approximate equation solutions that converge to the true solution assuming solution uniqueness and some additional mild regularity conditions. Our analysis is performed under the supremum norm, allowing wider applicability of our results. Worst-case error bounds are also available from solving a linear program. We demonstrate the viability and computational performance of our approach by constructing three examples. The solution of the first example can be constructed manually but demonstrates the correctness and convergence of our approach. The second application example involves stationary distribution equations of a stochastic model and demonstrates the dramatic improvement our approach provides over the use of computer simulation. The third example solves a problem involving an everywhere nondifferentiable function for which no closed-form solution is available. 
    more » « less
  5. The interaction of localised solitary waves with large-scale, time-varying dispersive mean flows subject to non-convex flux is studied in the framework of the modified Korteweg–de Vries (mKdV) equation, a canonical model for internal gravity wave propagation and potential vorticity fronts in stratified fluids. The effect of large amplitude, dynamically evolving mean flows on the propagation of localised waves – essentially ‘soliton steering’ by the mean flow – is considered. A recent theoretical and experimental study of this new type of dynamic soliton–mean flow interaction for convex flux has revealed two scenarios where the soliton either transmits through the varying mean flow or remains trapped inside it. In this paper, it is demonstrated that the presence of a non-convex cubic hydrodynamic flux introduces significant modifications to the scenarios for transmission and trapping. A reduced set of Whitham modulation equations is used to formulate a general mathematical framework for soliton–mean flow interaction with non-convex flux. Solitary wave trapping is stated in terms of crossing modulation characteristics. Non-convexity and positive dispersion – common for stratified fluids – imply the existence of localised, sharp transition fronts (kinks). Kinks play dual roles as a mean flow and a wave, imparting polarity reversal to solitons and dispersive mean flows, respectively. Numerical simulations of the mKdV equation agree with modulation theory predictions. The mathematical framework developed is general, not restricted to completely integrable equations like mKdV, enabling application beyond the mKdV setting to other fluid dynamic contexts subject to non-convex flux such as strongly nonlinear internal wave propagation that is prevalent in the ocean. 
    more » « less