skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical issues of the Total Exchange Flow (TEF) analysis framework for quantifying estuarine circulation
Abstract. For more than a century, estuarine exchange flow has been quantified by meansof the Knudsen relations which connect bulk quantities such as inflow andoutflow volume fluxes and salinities. These relations are closely linked toestuarine mixing. The recently developed Total Exchange Flow (TEF) analysis framework, which usessalinity coordinates to calculate these bulk quantities, allows an exactformulation of the Knudsen relations in realistic cases. There are howevernumerical issues, since the original method does not converge to the TEF bulkvalues for an increasing number of salinity classes. In the present study,this problem is investigated and the method of dividing salinities,described by MacCready et al. (2018), is mathematically introduced. Achallenging yet compact analytical scenario for a well-mixed estuarineexchange flow is investigated for both methods, showing the properconvergence of the dividing salinity method. Furthermore, the dividingsalinity method is applied to model results of the Baltic Sea to demonstratethe analysis of realistic exchange flows and exchange flows with more thantwo layers.  more » « less
Award ID(s):
1736242
PAR ID:
10097532
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Ocean Science
Volume:
15
Issue:
3
ISSN:
1812-0792
Page Range / eLocation ID:
601 to 614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The exchange between estuaries and the coastal ocean is a key dynamical driver impacting nutrient and phytoplankton concentrations and regulating estuarine residence time, hypoxia, and acidification. Estuarine exchange flows can be particularly challenging to monitor because many systems have strong vertical and lateral velocity shear and sharp gradients in water properties that vary over space and time, requiring high‐resolution measurements in order to accurately constrain the flux. The total exchange flow (TEF) method provides detailed information about the salinity structure of the exchange, but requires observations (or model resolution) that resolve the time and spatial co‐variability of salinity and currents. The goal of this analysis is to provide recommendations for measuring TEF with the most efficient spatial sampling resolution. Results from three realistic hydrodynamic models were investigated. These model domains included three estuary types: a bay (San Diego Bay), a salt‐wedge (Columbia River), and a fjord (Salish Sea). Model fields were sampled using three different mooring strategies, varying the number of mooring locations (lateral resolution) and sample depths (vertical resolution) with each method. The exchange volume transport was more sensitive than salinity to the sampling resolution. Most (>90%) of the exchange flow magnitude was captured by three to four moorings evenly distributed across the estuarine channel with a minimum threshold of 1–5 sample depths, which varied depending on the vertical stratification. These results can improve our ability to observe and monitor the exchange and transport of water masses efficiently with limited resources. 
    more » « less
  2. The two-way exchange of water and properties such as heat and salinity as well as other suspended material between estuaries and the coastal ocean is important to regulating these marine habitats. This exchange can be challenging to measure. The Total Exchange Flow (TEF) method provides a way to organize the complexity of this exchange into distinct layers based on a given water property. This method has primarily been applied in numerical models that provide high resolution output in space and time. The goal here is to identify the minimum horizontal and vertical sampling resolutions needed to measure TEF depending on estuary type. Results from three realistic hydrodynamic models were investigated. These models included three estuary types: bay (San Diego Bay: data/SDB_*.mat files), salt-wedge (Columbia River: data/CR_*.mat files), and fjord (Salish Sea: data/SJF_*.mat files). The models were sampled using three different mooring strategies, varying the number of mooring locations and sample depths with each method. This repository includes the Matlab code for repeating these sampling methods and TEF calculations using the data from the three estuary models listed above. 
    more » « less
  3. Abstract The Salish Sea is a large, fjordal estuarine system opening onto the northeast Pacific Ocean. It develops a strong estuarine exchange flow that draws in nutrients from the ocean and flushes the system on timescales of several months. It is difficult to apply existing dynamical theories of estuarine circulation there because of the extreme bathymetric complexity. A realistic numerical model of the system was manipulated to have stronger and weaker tides to explore the sensitivity of the exchange flow to tides. This sensitivity was explored over two timescales: annual means and the spring‐neap. Two theories for the estuarine exchange flow are: (a) “gravitational circulation” where exchange is driven by the baroclinic pressure gradient due to along‐channel salinity variation, and (b) “tidal pumping” where tidal advection combined with flow separation forces the exchange. Past observations suggested gravitational circulation was of leading importance in the Salish Sea. We find here that the exchange flow increases with stronger tides, particularly in annual averages, suggesting it is controlled by tidal pumping. However, the landward salt transport due to the exchange flow decreases with stronger tides because greater mixing decreases the salinity difference between incoming and outgoing water. These results may be characteristic of estuarine systems that have rough topography and strong tides. 
    more » « less
  4. The flocculation behavior of clay minerals in aquatic environments is an important process in estuarine and riverine dynamics, where strong gradients in salinity can locally occur. Various contradicting observations have been reported in the literature on the impact of salt concentration on the settling process of cohesive sediments. To address this issue in a systematic manner, we investigate the settling behavior of clay minerals as a function of the salt concentration of the ambient water. Specifically, we focus on montmorillonite as a prototype clay mineral with a high cation exchange capacity (CEC). To this end, we study suspensions of Wyoming bentonite (Volclay SPV) as a very important constituent for many constructional and industrial purposes. We perform an experimental campaign to study the settling behavior of moderately turbid montmorillonite concentrations in monovalent salt solutions with different salinities (sodium chloride) to represent different environments ranging from deionized to ocean water, respectively. The subsequent settling process was monitored by taking pictures by a camera in regular time intervals over a total observation time up to 48 h. In addition, a modified hydrometer analysis is conducted to determine the grain size distribution (in terms of an equivalent diameter) of the flocculated clay suspension in salt water. Despite the rather high cation exchange capacity of the investigated clay (CEC=88.1), our results show that the settling speed drastically increases within a range of 0.6–1.0 PSU and stays approximately constant for higher salinities. This critical salt concentration is defined here as the critical coagulation concentration (CCC) and lies well below the salinity of natural open water bodies. The hydrometer analysis revealed that 60% of the agglomerates exceed the equivalent grain size of 20 μm. Finally, the findings of this study are supplemented with experiments studying the effect of Extracellular Polymeric Substances (EPS) on the flocculation behavior of bentonite in salt water. Our results demonstrate that salinity is the original trigger for flocculation, whereas EPS allows for even larger floc size but it does not play a significant role for the settling processes of bentonite in estuarine environments. 
    more » « less
  5. Abstract A salinity variance framework is used to study mixing in the Salish Sea, a large fjordal estuary. Output from a realistic numerical model is used to create salinity variance budgets for individual basins within the Salish Sea for 2017–19. The salinity variance budgets are used to quantify the mixing in each basin and estimate the numerical mixing, which is found to contribute about one-third of the total mixing in the model. Whidbey Basin has the most intense mixing, due to its shallow depth and large river flow. Unlike in most other estuarine systems previously studied using the salinity variance method, mixing in the Salish Sea is controlled by the river flow and does not exhibit a pronounced spring–neap cycle. A “mixedness” analysis is used to determine when mixed water is expelled from the estuary. The river flow is correlated with mixed water removal, but the coupling is not as tight as with the mixing. Because the mixing is so highly correlated with the river flow, the long-term average approximation M = Q r s out s in can be used to predict the mixing in the Salish Sea and Puget Sound with good accuracy, even without any temporal averaging. Over a 3-yr average, the mixing in Puget Sound is directly related to the exchange flow salt transport. 
    more » « less