skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Directional Stiffness Modulation of Parallel Robots with Kinematic Redundancy and Variable Stiffness Joints
Parallel robots have been primarily investigated as po- tential mechanisms with stiffness modulation capabilities through the use of actuation redundancy to change internal preload. This paper investigates real-time stiffness modula- tion through the combined use of kinematic redundancy and variable stiffness actuators. A known notion of directional stiffness is used to guide the real-time geometric reconfig- uration of a parallel robot and command changes in joint- level stiffness. A weighted gradient-projection redundancy resolution approach is demonstrated for resolving kinematic redundancy while satisfying the desired directional stiffness and avoiding singularity and collision between the legs of a Gough/Stewart parallel robot with movable anchor points at its base and with variable stiffness actuators. A simulation study is carried out to delineate the effects of using kinematic redundancy with or without the use of variable stiffness ac- tuators. In addition, modulation of the entire stiffness matrix is demonstrated as an extension of the approach for modulating directional stiffness.  more » « less
Award ID(s):
1734461
PAR ID:
10097563
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Mechanisms and Robotics
ISSN:
1942-4302
Page Range / eLocation ID:
1-14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Soft robots have revolutionized machine interactions with humans and the environment to enable safe operations. The fixed morphology of these soft robots dictates their mechanical performance, including strength and stiffness, which limits their task range and applications. Proposed here are modular, reconfigurable soft robots with the capabilities of changing their morphology and adjusting their stiffness to perform versatile object handling and planar or spatial operational tasks. The reconfiguration and tunable interconnectivity between the elemental soft, pneumatically driven actuation units is made possible through integrated permanent magnets with coils. The proposed concept of attaching/detaching actuators enables these robots to be easily rearranged in various configurations to change the morphology of the system. While the potential for these actuators allows for arbitrary reconfiguration through parallel or serial connection on their four sides, we demonstrate here a configuration called ManusBot. ManusBot is a hand-like structure with digits and palm capable of individual actuation. The capabilities of this system are demonstrated through specific examples of stiffness modulation, variable payload capacity, and structure forming for enhanced and versatile object manipulation and operations. The proposed modular, soft robotic system with interconnecting capabilities significantly expands the versatility of operational tasks as well as the adaptability of handling objects of various shapes, sizes, and weights using a single system. 
    more » « less
  2. Legged and gait-assistance robots can walk more efficiently if their actuators are compliant. The adjustable compliance of variable-stiffness actuators (VSAs) can enhance this benefit. However, this functionality requires additional mechanical components making VSAs impractical for some uses due to increased weight, volume, and cost. VSAs would be more practical if they could modulate the stiffness of their springs without additional components, which usually include moving parts and an additional motor. Therefore, we designed a VSA that uses dielectric elastomer transducers (DETs) for springs. It does not need mechanical stiffness-adjusting components because DETs soften due to electrostatic forces. This paper presents details and performance of our design. Our DET VSA demonstrated independent modulation of its equilibrium position and stiffness. Our design approach could make it practical to obtain the benefits of variable-stiffness actuation with less weight, volume, and cost than normally accompanies them, once weaknesses of DET technology are addressed. 
    more » « less
  3. null (Ed.)
    Abstract Mobile Cable-Driven Parallel Manipulators (m-CDPM) are a sub-class of CDPM with greater-capabilities (antagonistic cable-tensioning and reconfigurability) by virtue of mobility of the base-winches. In past work, we had also explored creation of adjustable spring-stiffness modules, in-line with cables, which decouple cable-stiffness and cable-tensions. All these internal-freedoms allow an m-CDPM to track desired trajectories while equilibrating end-effector wrenches and improving lateral disturbance-rejection. However, parameter and configuration selection is key to unlocking these benefits. To this end, we consider an approach to partition task-execution into a primary (fast) winch-tension control and secondary (slow) reconfiguration and joint-stiffness modulation. This would enable a primary trajectory-tracking task together with secondary task-space stiffness tailoring, using system-reconfiguration and joint-stiffness modulation. In this paper, we limit our scope to feasibility-evaluation to achieve the stiffness modulation as a secondary goal within an offline design-optimization setting (but with an eye towards real-time implementation). These aspects are illustrated in the context of a 3-PRP m-CDPM for tracking a desired trajectory within its wrench-feasible workspace. The secondary-task is the directional-alignment and shaping of the stiffness ellipsoid to shape the disturbance-rejection characteristics along the trajectory. The optimization is solved through constrained minimization of a multi-objective weighted cost function subject to non-linear workspace feasibility, and inequality stiffness and tension constraints. 
    more » « less
  4. Abstract Variable stiffness manipulators balance the trade-off between manipulation performance needing high stiffness and safe human–robot interaction desiring low stiffness. Variable stiffness links enable this flexible manipulation function during human–robot interaction. In this paper, we propose a novel variable stiffness link based on discrete variable stiffness units (DSUs). A DSU is a parallel guided beam that can adjust stiffness discretely by changing the cross-sectional area properties of the hollow beam segments. The variable stiffness link (Tri-DSU) consists of three tandem DSUs to achieve eight stiffness modes and a stiffness ratio of 31. To optimize the design, stiffness analysis of the DSU and Tri-DSU under various configurations and forces was performed by a derived linear analytical model which applies to small/intermediate deflections. The model is derived using the approach of serially connected beams and superposition combinations. 3D-Printed prototypes were built to verify the feature and performance of the Tri-DSU in comparison with the finite element analysis and analytical model results. It’s demonstrated that our model can accurately predict the stiffnesses of the DSU and Tri-DSU within a certain range of parameters. Impact tests were also conducted to validate the performance of the Tri-DSU. The developed method and analytical model are extendable to multiple DSUs with parameter configurations to achieve modularization and customization, and also provide a tool for the design of reconfigurable collaborative robot (cobot) manipulators. 
    more » « less
  5. Abstract Variable stiffness manipulators balance the trade-off between manipulation performance needing high stiffness and safe human-robot interaction desiring low stiffness. Variable stiffness compliant links provide a solution to enable this flexible manipulation function in human-robot co-working scenarios. In this paper, we propose a novel variable stiffness link based on discrete variable stiffness units (DSUs). A DSU is a parallel guided beam that can adjust stiffness discretely by changing the cross-sectional area properties of the hollow beam segments. The variable stiffness link (named Tri-DSU) consists of three tandem DSUs to achieve eight stiffness modes and a maximum stiffness change ratio of 31. To optimize the design, stiffness analysis of the DSU and Tri-DSU under various configurations and forces was performed by a derived theoretical model compared with finite element analysis (FEA). The analytical stiffness model is derived using the approach of serially connected beams and superposition combinations. It works not only for thin-walled flexure beams but also for general thick beam models. 3-D printed prototypes were built to verify the feature and performance of the Tri-DSU in comparison with the FEA and analytical model results. It’s demonstrated that our analytical model can accurately predict the stiffnesses of the DSU and Tri-DSU within a certain range of parameters. The developed variable stiffness link method and analytical model are extendable to multiple DSUs with different sizes and parameter configurations to achieve modularization and customization. The advantages of the stiffness change mechanism are rapid actuation, simple structure, and compact layout. These methods and results provide a new conceptual and theoretical basis for the development of new reconfigurable cobot manipulators, variable stiffness structures, and compliant mechanisms. 
    more » « less